in denoiser/evaluate.py [0:0]
def evaluate(args, model=None, data_loader=None):
total_pesq = 0
total_stoi = 0
total_cnt = 0
updates = 5
# Load model
if not model:
model = pretrained.get_model(args).to(args.device)
model.eval()
# Load data
if data_loader is None:
dataset = NoisyCleanSet(args.data_dir,
matching=args.matching, sample_rate=model.sample_rate)
data_loader = distrib.loader(dataset, batch_size=1, num_workers=2)
pendings = []
with ProcessPoolExecutor(args.num_workers) as pool:
with torch.no_grad():
iterator = LogProgress(logger, data_loader, name="Eval estimates")
for i, data in enumerate(iterator):
# Get batch data
noisy, clean = [x.to(args.device) for x in data]
# If device is CPU, we do parallel evaluation in each CPU worker.
if args.device == 'cpu':
pendings.append(
pool.submit(_estimate_and_run_metrics, clean, model, noisy, args))
else:
estimate = get_estimate(model, noisy, args)
estimate = estimate.cpu()
clean = clean.cpu()
pendings.append(
pool.submit(_run_metrics, clean, estimate, args, model.sample_rate))
total_cnt += clean.shape[0]
for pending in LogProgress(logger, pendings, updates, name="Eval metrics"):
pesq_i, stoi_i = pending.result()
total_pesq += pesq_i
total_stoi += stoi_i
metrics = [total_pesq, total_stoi]
pesq, stoi = distrib.average([m/total_cnt for m in metrics], total_cnt)
logger.info(bold(f'Test set performance:PESQ={pesq}, STOI={stoi}.'))
return pesq, stoi