def get_model()

in denoiser/pretrained.py [0:0]


def get_model(args):
    """
    Load local model package or torchhub pre-trained model.
    """
    if args.model_path:
        logger.info("Loading model from %s", args.model_path)
        pkg = torch.load(args.model_path, 'cpu')
        if 'model' in pkg:
            if 'best_state' in pkg:
                pkg['model']['state'] = pkg['best_state']
            model = deserialize_model(pkg['model'])
        else:
            model = deserialize_model(pkg)
    elif args.dns64:
        logger.info("Loading pre-trained real time H=64 model trained on DNS.")
        model = dns64()
    elif args.master64:
        logger.info("Loading pre-trained real time H=64 model trained on DNS and Valentini.")
        model = master64()
    elif args.valentini_nc:
        logger.info("Loading pre-trained H=64 model trained on Valentini.")
        model = valentini_nc()
    else:
        logger.info("Loading pre-trained real time H=48 model trained on DNS.")
        model = dns48()
    logger.debug(model)
    return model