def _reset()

in denoiser/solver.py [0:0]


    def _reset(self):
        """_reset."""
        load_from = None
        load_best = False
        keep_history = True
        # Reset
        if self.checkpoint and self.checkpoint_file.exists() and not self.restart:
            load_from = self.checkpoint_file
        elif self.continue_from:
            load_from = self.continue_from
            load_best = self.args.continue_best
            keep_history = False

        if load_from:
            logger.info(f'Loading checkpoint model: {load_from}')
            package = torch.load(load_from, 'cpu')
            if load_best:
                self.model.load_state_dict(package['best_state'])
            else:
                self.model.load_state_dict(package['model']['state'])
            if 'optimizer' in package and not load_best:
                self.optimizer.load_state_dict(package['optimizer'])
            if keep_history:
                self.history = package['history']
            self.best_state = package['best_state']
        continue_pretrained = self.args.continue_pretrained
        if continue_pretrained:
            logger.info("Fine tuning from pre-trained model %s", continue_pretrained)
            model = getattr(pretrained, self.args.continue_pretrained)()
            self.model.load_state_dict(model.state_dict())