def build_optimizer()

in d2/train_net.py [0:0]


    def build_optimizer(cls, cfg, model):
        params: List[Dict[str, Any]] = []
        memo: Set[torch.nn.parameter.Parameter] = set()
        for key, value in model.named_parameters(recurse=True):
            if not value.requires_grad:
                continue
            # Avoid duplicating parameters
            if value in memo:
                continue
            memo.add(value)
            lr = cfg.SOLVER.BASE_LR
            weight_decay = cfg.SOLVER.WEIGHT_DECAY
            if "backbone" in key:
                lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER
            params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]

        def maybe_add_full_model_gradient_clipping(optim):  # optim: the optimizer class
            # detectron2 doesn't have full model gradient clipping now
            clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
            enable = (
                cfg.SOLVER.CLIP_GRADIENTS.ENABLED
                and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
                and clip_norm_val > 0.0
            )

            class FullModelGradientClippingOptimizer(optim):
                def step(self, closure=None):
                    all_params = itertools.chain(*[x["params"] for x in self.param_groups])
                    torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
                    super().step(closure=closure)

            return FullModelGradientClippingOptimizer if enable else optim

        optimizer_type = cfg.SOLVER.OPTIMIZER
        if optimizer_type == "SGD":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
                params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
            )
        elif optimizer_type == "ADAMW":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
                params, cfg.SOLVER.BASE_LR
            )
        else:
            raise NotImplementedError(f"no optimizer type {optimizer_type}")
        if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
            optimizer = maybe_add_gradient_clipping(cfg, optimizer)
        return optimizer