def forward()

in models/segmentation.py [0:0]


    def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
        x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)

        x = self.lay1(x)
        x = self.gn1(x)
        x = F.relu(x)
        x = self.lay2(x)
        x = self.gn2(x)
        x = F.relu(x)

        cur_fpn = self.adapter1(fpns[0])
        if cur_fpn.size(0) != x.size(0):
            cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
        x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
        x = self.lay3(x)
        x = self.gn3(x)
        x = F.relu(x)

        cur_fpn = self.adapter2(fpns[1])
        if cur_fpn.size(0) != x.size(0):
            cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
        x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
        x = self.lay4(x)
        x = self.gn4(x)
        x = F.relu(x)

        cur_fpn = self.adapter3(fpns[2])
        if cur_fpn.size(0) != x.size(0):
            cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
        x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
        x = self.lay5(x)
        x = self.gn5(x)
        x = F.relu(x)

        x = self.out_lay(x)
        return x