in datasets/transforms.py [0:0]
def crop(image, target, region):
cropped_image = F.crop(image, *region)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "area", "iscrowd"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
# remove elements for which the boxes or masks that have zero area
if "boxes" in target or "masks" in target:
# favor boxes selection when defining which elements to keep
# this is compatible with previous implementation
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
for field in fields:
target[field] = target[field][keep]
return cropped_image, target