def apply()

in utils.py [0:0]


    def apply(self, x):
        # input is from numpy
        if isinstance(x, np.ndarray):
            if self.mean is not None:
                x -= self.mean
            return np.dot(self.dvt, x.T).T

        # input is from torch and is on GPU
        if x.is_cuda:
            if self.mean is not None:
                x -= torch.cuda.FloatTensor(self.mean)
            return torch.mm(torch.cuda.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)

        # input if from torch, on CPU
        if self.mean is not None:
            x -= torch.FloatTensor(self.mean)
        return torch.mm(torch.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)