def __init__()

in vision_transformer.py [0:0]


    def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
        super().__init__()
        nlayers = max(nlayers, 1)
        if nlayers == 1:
            self.mlp = nn.Linear(in_dim, bottleneck_dim)
        else:
            layers = [nn.Linear(in_dim, hidden_dim)]
            if use_bn:
                layers.append(nn.BatchNorm1d(hidden_dim))
            layers.append(nn.GELU())
            for _ in range(nlayers - 2):
                layers.append(nn.Linear(hidden_dim, hidden_dim))
                if use_bn:
                    layers.append(nn.BatchNorm1d(hidden_dim))
                layers.append(nn.GELU())
            layers.append(nn.Linear(hidden_dim, bottleneck_dim))
            self.mlp = nn.Sequential(*layers)
        self.apply(self._init_weights)
        self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
        self.last_layer.weight_g.data.fill_(1)
        if norm_last_layer:
            self.last_layer.weight_g.requires_grad = False