def eval_linear()

in eval_linear.py [0:0]


def eval_linear(args):
    utils.init_distributed_mode(args)
    print("git:\n  {}\n".format(utils.get_sha()))
    print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
    cudnn.benchmark = True

    # ============ building network ... ============
    # if the network is a Vision Transformer (i.e. vit_tiny, vit_small, vit_base)
    if args.arch in vits.__dict__.keys():
        model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
        embed_dim = model.embed_dim * (args.n_last_blocks + int(args.avgpool_patchtokens))
    # if the network is a XCiT
    elif "xcit" in args.arch:
        model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
        embed_dim = model.embed_dim
    # otherwise, we check if the architecture is in torchvision models
    elif args.arch in torchvision_models.__dict__.keys():
        model = torchvision_models.__dict__[args.arch]()
        embed_dim = model.fc.weight.shape[1]
        model.fc = nn.Identity()
    else:
        print(f"Unknow architecture: {args.arch}")
        sys.exit(1)
    model.cuda()
    model.eval()
    # load weights to evaluate
    utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
    print(f"Model {args.arch} built.")

    linear_classifier = LinearClassifier(embed_dim, num_labels=args.num_labels)
    linear_classifier = linear_classifier.cuda()
    linear_classifier = nn.parallel.DistributedDataParallel(linear_classifier, device_ids=[args.gpu])

    # ============ preparing data ... ============
    val_transform = pth_transforms.Compose([
        pth_transforms.Resize(256, interpolation=3),
        pth_transforms.CenterCrop(224),
        pth_transforms.ToTensor(),
        pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
    dataset_val = datasets.ImageFolder(os.path.join(args.data_path, "val"), transform=val_transform)
    val_loader = torch.utils.data.DataLoader(
        dataset_val,
        batch_size=args.batch_size_per_gpu,
        num_workers=args.num_workers,
        pin_memory=True,
    )

    if args.evaluate:
        utils.load_pretrained_linear_weights(linear_classifier, args.arch, args.patch_size)
        test_stats = validate_network(val_loader, model, linear_classifier, args.n_last_blocks, args.avgpool_patchtokens)
        print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
        return

    train_transform = pth_transforms.Compose([
        pth_transforms.RandomResizedCrop(224),
        pth_transforms.RandomHorizontalFlip(),
        pth_transforms.ToTensor(),
        pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
    dataset_train = datasets.ImageFolder(os.path.join(args.data_path, "train"), transform=train_transform)
    sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)
    train_loader = torch.utils.data.DataLoader(
        dataset_train,
        sampler=sampler,
        batch_size=args.batch_size_per_gpu,
        num_workers=args.num_workers,
        pin_memory=True,
    )
    print(f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs.")

    # set optimizer
    optimizer = torch.optim.SGD(
        linear_classifier.parameters(),
        args.lr * (args.batch_size_per_gpu * utils.get_world_size()) / 256., # linear scaling rule
        momentum=0.9,
        weight_decay=0, # we do not apply weight decay
    )
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=0)

    # Optionally resume from a checkpoint
    to_restore = {"epoch": 0, "best_acc": 0.}
    utils.restart_from_checkpoint(
        os.path.join(args.output_dir, "checkpoint.pth.tar"),
        run_variables=to_restore,
        state_dict=linear_classifier,
        optimizer=optimizer,
        scheduler=scheduler,
    )
    start_epoch = to_restore["epoch"]
    best_acc = to_restore["best_acc"]

    for epoch in range(start_epoch, args.epochs):
        train_loader.sampler.set_epoch(epoch)

        train_stats = train(model, linear_classifier, optimizer, train_loader, epoch, args.n_last_blocks, args.avgpool_patchtokens)
        scheduler.step()

        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                     'epoch': epoch}
        if epoch % args.val_freq == 0 or epoch == args.epochs - 1:
            test_stats = validate_network(val_loader, model, linear_classifier, args.n_last_blocks, args.avgpool_patchtokens)
            print(f"Accuracy at epoch {epoch} of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
            best_acc = max(best_acc, test_stats["acc1"])
            print(f'Max accuracy so far: {best_acc:.2f}%')
            log_stats = {**{k: v for k, v in log_stats.items()},
                         **{f'test_{k}': v for k, v in test_stats.items()}}
        if utils.is_main_process():
            with (Path(args.output_dir) / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")
            save_dict = {
                "epoch": epoch + 1,
                "state_dict": linear_classifier.state_dict(),
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "best_acc": best_acc,
            }
            torch.save(save_dict, os.path.join(args.output_dir, "checkpoint.pth.tar"))
    print("Training of the supervised linear classifier on frozen features completed.\n"
                "Top-1 test accuracy: {acc:.1f}".format(acc=best_acc))