in domainbed_measures/measures/held_out_measures.py [0:0]
def _calculate_lambda_closeness(self,
all_train_feats,
all_train_labels,
all_held_out_feats,
all_held_out_labels,
lr_decay_gamma,
num_head_batches,
max_lr,
lr_sweep_factor,
train_env_to_use,
train_val_split,
trainval_test_split=0.8):
# Permute the datapoints from train feats
all_train_feats, all_train_labels = permute_dataset(
all_train_feats, all_train_labels)
all_held_out_feats, all_held_out_labels = permute_dataset(
all_held_out_feats, all_held_out_labels)
ndata = min(all_train_feats.shape[0], all_held_out_feats.shape[0])
all_train_feats = all_train_feats[:ndata, :]
all_train_labels = all_train_labels[:ndata]
all_held_out_feats = all_held_out_feats[:ndata, :]
all_held_out_labels = all_held_out_labels[:ndata]
all_feats = torch.vstack([all_train_feats, all_held_out_feats])
all_labels = torch.hstack([all_train_labels, all_held_out_labels])
all_feats, all_labels = permute_dataset(all_feats, all_labels)
feat_dim = all_train_feats.shape[-1]
logging.info("Obtaining heads")
callbacks = [
skorch.callbacks.LRScheduler(
torch.optim.lr_scheduler.StepLR,
gamma=lr_decay_gamma,
step_size=self._train_epochs / 2,
),
skorch.callbacks.EpochScoring(
self.accuracy_fn,
lower_is_better=False,
name='val_accuracy',
),
skorch.callbacks.EpochScoring(
self.accuracy_fn,
lower_is_better=False,
name='train_accuracy',
on_train=True,
),
skorch.callbacks.EarlyStopping(
monitor='val_accuracy',
patience=15,
threshold=0.0001,
threshold_mode='rel',
lower_is_better=False,
)
]
heads = self.get_heads(
num_head_batches,
feat_dim=feat_dim,
criterion=nn.CrossEntropyLoss,
num_labels=len(torch.unique(all_train_labels)),
max_lr=max_lr,
lr_sweep_factor=lr_sweep_factor,
train_split=skorch.dataset.CVSplit(train_val_split),
batch_size=self._algorithm.hparams['batch_size'],
callbacks=callbacks)
val_accuracies = []
for hidx, h in enumerate(heads):
logging.info("Fitting head %d/%d" % (hidx, len(heads)))
train_val_idx = int(trainval_test_split * all_feats.shape[0])
h.fit(all_feats[:train_val_idx, :], all_labels[:train_val_idx])
val_accuracies.append([x['val_accuracy'] for x in h.history][-1])
best_model_idx = np.argmax(val_accuracies)
best_accuracy = heads[best_model_idx].accuracy(
all_feats[train_val_idx:, :], all_labels[train_val_idx:])
return 2.0 * (2.0 * best_accuracy - 1)