in domainbed_measures/measures/held_out_measures.py [0:0]
def _calculate_divergence_measure(self,
all_train_feats,
train_domain_labels,
all_held_out_feats,
heldout_domain_labels,
lr_decay_gamma,
num_head_batches,
max_lr,
lr_sweep_factor,
train_env_to_use,
train_val_split,
trainval_test_split=0.8):
if (train_domain_labels - 1).sum() != 0:
raise ValueError(
"Train domain labels must be encoded with label 1")
if (heldout_domain_labels).sum() != 0:
raise ValueError(
"Held out domain labels must be encoded with label 0")
feat_dim = all_train_feats.shape[-1]
all_train_feats, train_domain_labels = permute_dataset(
all_train_feats, train_domain_labels)
all_held_out_feats, heldout_domain_labels = permute_dataset(
all_held_out_feats, heldout_domain_labels)
num_data = min(all_train_feats.shape[0], all_held_out_feats.shape[0])
all_train_feats = all_train_feats[:num_data, :]
train_domain_labels = train_domain_labels[:num_data]
all_held_out_feats = all_held_out_feats[:num_data, :]
heldout_domain_labels = heldout_domain_labels[:num_data]
all_feats = torch.vstack([all_train_feats, all_held_out_feats])
all_labels = torch.hstack([train_domain_labels, heldout_domain_labels])
all_feats, all_labels = permute_dataset(all_feats, all_labels)
callbacks = [
skorch.callbacks.LRScheduler(
torch.optim.lr_scheduler.StepLR,
gamma=lr_decay_gamma,
step_size=self._train_epochs / 2,
),
skorch.callbacks.EpochScoring(
self.hdh_accuracy_fn,
lower_is_better=False,
name='val_divergence',
),
skorch.callbacks.EpochScoring(
self.hdh_accuracy_fn,
lower_is_better=False,
name='train_divergence',
on_train=True,
),
skorch.callbacks.EarlyStopping(
monitor='val_divergence',
patience=15,
threshold=0.0001,
threshold_mode='rel',
lower_is_better=False,
)
]
heads = self.get_hdh_heads(
num_head_batches,
feat_dim=feat_dim,
criterion=NegHDelHCriterion,
num_labels=self._num_classes,
max_lr=max_lr,
lr_sweep_factor=lr_sweep_factor,
train_split=skorch.dataset.CVSplit(train_val_split),
batch_size=self._algorithm.hparams['batch_size'],
callbacks=callbacks)
val_divergence = []
train_divergence = []
for hidx, h in enumerate(heads):
logging.info("Fitting head %d/%d" % (hidx, len(heads)))
train_val_idx = int(trainval_test_split * all_feats.shape[0])
h.fit(all_feats[:train_val_idx, :], all_labels[:train_val_idx])
val_divergence.append([x['val_divergence'] for x in h.history][-1])
train_divergence.append(
max([x['train_divergence'] for x in h.history]))
best_model_idx = np.argmax(val_divergence)
h_del_h_divergence = self.hdh_accuracy_fn(
heads[best_model_idx],
torch.utils.data.TensorDataset(all_feats[train_val_idx:, :],
all_labels[train_val_idx:]))
return h_del_h_divergence, max(train_divergence)