eft/apps/eval_multicrop.py [194:358]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if eval_pose:
            # Regressor broadcasting
            J_regressor_batch = J_regressor[None, :].expand(pred_vertices.shape[0], -1, -1).to(device)
            # Get 14 ground truth joints
            if 'h36m' in dataset_name or 'mpi-inf' in dataset_name:
                gt_keypoints_3d = batch['pose_3d'].cuda()
                gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_gt, :-1]
            # For 3DPW get the 14 common joints from the rendered shape
            else:
                gt_vertices = smpl_male(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 
                gt_vertices_female = smpl_female(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 
                gt_vertices[gender==1, :, :] = gt_vertices_female[gender==1, :, :]
                gt_keypoints_3d = torch.matmul(J_regressor_batch, gt_vertices)
                gt_pelvis = gt_keypoints_3d[:, [0],:].clone()
                gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_h36m, :]
                gt_keypoints_3d = gt_keypoints_3d - gt_pelvis             

                if False:
                    from renderer import glViewer
                    import humanModelViewer
                    batchNum = gt_pose.shape[0]
                    for i in range(batchNum):
                        smpl_face = humanModelViewer.GetSMPLFace()
                        meshes_gt = {'ver': gt_vertices[i].cpu().numpy()*100, 'f': smpl_face}
                        meshes_pred = {'ver': pred_vertices[i].cpu().numpy()*100, 'f': smpl_face}

                        glViewer.setMeshData([meshes_gt, meshes_pred], bComputeNormal= True)
                        glViewer.show(5)

            # Get 14 predicted joints from the mesh
            pred_keypoints_3d = torch.matmul(J_regressor_batch, pred_vertices)
            if save_results:
                pred_joints[step * batch_size:step * batch_size + curr_batch_size, :, :]  = pred_keypoints_3d.cpu().numpy()
            pred_pelvis = pred_keypoints_3d[:, [0],:].clone()
            pred_keypoints_3d = pred_keypoints_3d[:, joint_mapper_h36m, :]
            pred_keypoints_3d = pred_keypoints_3d - pred_pelvis 


            #Visualize GT mesh and SPIN output mesh
            if False:
                # from renderer import viewer2D
                from renderer import glViewer
                import humanModelViewer

                gt_keypoints_3d_vis = gt_keypoints_3d.cpu().numpy()
                gt_keypoints_3d_vis = np.reshape(gt_keypoints_3d_vis, (gt_keypoints_3d_vis.shape[0],-1))        #N,14x3
                gt_keypoints_3d_vis = np.swapaxes(gt_keypoints_3d_vis, 0,1) *100

                pred_keypoints_3d_vis = pred_keypoints_3d.cpu().numpy()
                pred_keypoints_3d_vis = np.reshape(pred_keypoints_3d_vis, (pred_keypoints_3d_vis.shape[0],-1))        #N,14x3
                pred_keypoints_3d_vis = np.swapaxes(pred_keypoints_3d_vis, 0,1) *100
                # output_sample = output_sample[ : , np.newaxis]*0.1
                # gt_sample = gt_sample[: , np.newaxis]*0.1
                # (skelNum, dim, frames)
                glViewer.setSkeleton( [gt_keypoints_3d_vis, pred_keypoints_3d_vis] ,jointType='smplcoco')#(skelNum, dim, frames)
                glViewer.show()

            # Absolute error (MPJPE)
            error = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()

            error_upper = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
            # mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error

            # Reconstuction_error
            r_error = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)

            r_error_upper = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)
            # recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error

            for ii, p in enumerate(batch['imgname'][:len(r_error)]):
                seqName = os.path.basename( os.path.dirname(p))
                # quant_mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error
                if seqName not in quant_mpjpe.keys():
                    quant_mpjpe[seqName] = []
                    quant_recon_err[seqName] = []
                
                quant_mpjpe[seqName].append(error[ii]) 
                quant_recon_err[seqName].append(r_error[ii])

            # Reconstuction_error
            # quant_recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error

            list_mpjpe = np.hstack([ quant_mpjpe[k] for k in quant_mpjpe])
            list_reconError = np.hstack([ quant_recon_err[k] for k in quant_recon_err])
            if bVerbose:
                print(">>> {} : MPJPE {:.02f} mm, error: {:.02f} mm | Total MPJPE {:.02f} mm, error {:.02f} mm".format(seqName, np.mean(error)*1000, np.mean(r_error)*1000, np.hstack(list_mpjpe).mean()*1000, np.hstack(list_reconError).mean()*1000) )

            # print("MPJPE {}, error: {}".format(np.mean(error)*100, np.mean(r_error)*100))

        # If mask or part evaluation, render the mask and part images
        # if eval_masks or eval_parts:
        #     mask, parts = renderer(pred_vertices, pred_camera)

        # Mask evaluation (for LSP)
        if eval_masks:
            center = batch['center'].cpu().numpy()
            scale = batch['scale'].cpu().numpy()
            # Dimensions of original image
            orig_shape = batch['orig_shape'].cpu().numpy()
            for i in range(curr_batch_size):
                # After rendering, convert imate back to original resolution
                pred_mask = uncrop(mask[i].cpu().numpy(), center[i], scale[i], orig_shape[i]) > 0
                # Load gt mask
                gt_mask = cv2.imread(os.path.join(annot_path, batch['maskname'][i]), 0) > 0
                # Evaluation consistent with the original UP-3D code
                accuracy += (gt_mask == pred_mask).sum()
                pixel_count += np.prod(np.array(gt_mask.shape))
                for c in range(2):
                    cgt = gt_mask == c
                    cpred = pred_mask == c
                    tp[c] += (cgt & cpred).sum()
                    fp[c] +=  (~cgt & cpred).sum()
                    fn[c] +=  (cgt & ~cpred).sum()
                f1 = 2 * tp / (2 * tp + fp + fn)

        # Part evaluation (for LSP)
        if eval_parts:
            center = batch['center'].cpu().numpy()
            scale = batch['scale'].cpu().numpy()
            orig_shape = batch['orig_shape'].cpu().numpy()
            for i in range(curr_batch_size):
                pred_parts = uncrop(parts[i].cpu().numpy().astype(np.uint8), center[i], scale[i], orig_shape[i])
                # Load gt part segmentation
                gt_parts = cv2.imread(os.path.join(annot_path, batch['partname'][i]), 0)
                # Evaluation consistent with the original UP-3D code
                # 6 parts + background
                for c in range(7):
                   cgt = gt_parts == c
                   cpred = pred_parts == c
                   cpred[gt_parts == 255] = 0
                   parts_tp[c] += (cgt & cpred).sum()
                   parts_fp[c] +=  (~cgt & cpred).sum()
                   parts_fn[c] +=  (cgt & ~cpred).sum()
                gt_parts[gt_parts == 255] = 0
                pred_parts[pred_parts == 255] = 0
                parts_f1 = 2 * parts_tp / (2 * parts_tp + parts_fp + parts_fn)
                parts_accuracy += (gt_parts == pred_parts).sum()
                parts_pixel_count += np.prod(np.array(gt_parts.shape))

        # Print intermediate results during evaluation
        if bVerbose:
            if step % log_freq == log_freq - 1:
                if eval_pose:
                    print('MPJPE: ' + str(1000 * mpjpe[:step * batch_size].mean()))
                    print('Reconstruction Error: ' + str(1000 * recon_err[:step * batch_size].mean()))
                    print()
                if eval_masks:
                    print('Accuracy: ', accuracy / pixel_count)
                    print('F1: ', f1.mean())
                    print()
                if eval_parts:
                    print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
                    print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
                    print()

        # if step==3:     #Debug
        #     break
    # Save reconstructions to a file for further processing
    if save_results:
        np.savez(result_file, pred_joints=pred_joints, pose=smpl_pose, betas=smpl_betas, camera=smpl_camera)
    # Print final results during evaluation

    if bVerbose:
        print('*** Final Results ***')
        print()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



eft/apps/evalfrompkl_hmr.py [353:518]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if eval_pose:
            # Regressor broadcasting
            J_regressor_batch = J_regressor[None, :].expand(pred_vertices.shape[0], -1, -1).to(device)
            # Get 14 ground truth joints
            if 'h36m' in dataset_name or 'mpi-inf' in dataset_name:
                gt_keypoints_3d = batch['pose_3d'].cuda()
                gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_gt, :-1]
            # For 3DPW get the 14 common joints from the rendered shape
            else:
                gt_vertices = smpl_male(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 
                gt_vertices_female = smpl_female(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 
                gt_vertices[gender==1, :, :] = gt_vertices_female[gender==1, :, :]
                gt_keypoints_3d = torch.matmul(J_regressor_batch, gt_vertices)
                gt_pelvis = gt_keypoints_3d[:, [0],:].clone()
                gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_h36m, :]
                gt_keypoints_3d = gt_keypoints_3d - gt_pelvis             

                if False:
                    from renderer import viewer2D
                    from renderer import glViewer
                    import humanModelViewer
                    batchNum = gt_pose.shape[0]
                    for i in range(batchNum):
                        smpl_face = humanModelViewer.GetSMPLFace()
                        meshes_gt = {'ver': gt_vertices[i].cpu().numpy()*100, 'f': smpl_face}
                        meshes_pred = {'ver': pred_vertices[i].cpu().numpy()*100, 'f': smpl_face}

                        glViewer.setMeshData([meshes_gt, meshes_pred], bComputeNormal= True)
                        glViewer.show(5)

            # Get 14 predicted joints from the mesh
            pred_keypoints_3d = torch.matmul(J_regressor_batch, pred_vertices)
            if save_results:
                pred_joints[step * batch_size:step * batch_size + curr_batch_size, :, :]  = pred_keypoints_3d.cpu().numpy()
            pred_pelvis = pred_keypoints_3d[:, [0],:].clone()
            pred_keypoints_3d = pred_keypoints_3d[:, joint_mapper_h36m, :]
            pred_keypoints_3d = pred_keypoints_3d - pred_pelvis 

            #Visualize GT mesh and SPIN output mesh
            if False:
                from renderer import viewer2D
                from renderer import glViewer
                import humanModelViewer

                gt_keypoints_3d_vis = gt_keypoints_3d.cpu().numpy()
                gt_keypoints_3d_vis = np.reshape(gt_keypoints_3d_vis, (gt_keypoints_3d_vis.shape[0],-1))        #N,14x3
                gt_keypoints_3d_vis = np.swapaxes(gt_keypoints_3d_vis, 0,1) *100

                pred_keypoints_3d_vis = pred_keypoints_3d.cpu().numpy()
                pred_keypoints_3d_vis = np.reshape(pred_keypoints_3d_vis, (pred_keypoints_3d_vis.shape[0],-1))        #N,14x3
                pred_keypoints_3d_vis = np.swapaxes(pred_keypoints_3d_vis, 0,1) *100
                # output_sample = output_sample[ : , np.newaxis]*0.1
                # gt_sample = gt_sample[: , np.newaxis]*0.1
                # (skelNum, dim, frames)
                glViewer.setSkeleton( [gt_keypoints_3d_vis, pred_keypoints_3d_vis] ,jointType='smplcoco')#(skelNum, dim, frames)
                glViewer.show()
                

            # Absolute error (MPJPE)
            error = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()

            error_upper = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
            # mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error

            # Reconstuction_error
            r_error = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)

            r_error_upper = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)
            # recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error

            for ii, p in enumerate(batch['imgname'][:len(r_error)]):
                seqName = os.path.basename( os.path.dirname(p))
                # quant_mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error
                if seqName not in quant_mpjpe.keys():
                    quant_mpjpe[seqName] = []
                    quant_recon_err[seqName] = []
                
                quant_mpjpe[seqName].append(error[ii]) 
                quant_recon_err[seqName].append(r_error[ii])

            # Reconstuction_error
            # quant_recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error

            list_mpjpe = np.hstack([ quant_mpjpe[k] for k in quant_mpjpe])
            list_reconError = np.hstack([ quant_recon_err[k] for k in quant_recon_err])
            if bVerbose:
                print(">>> {} : MPJPE {:.02f} mm, error: {:.02f} mm | Total MPJPE {:.02f} mm, error {:.02f} mm".format(seqName, np.mean(error)*1000, np.mean(r_error)*1000, np.hstack(list_mpjpe).mean()*1000, np.hstack(list_reconError).mean()*1000) )

            # print("MPJPE {}, error: {}".format(np.mean(error)*100, np.mean(r_error)*100))

        # If mask or part evaluation, render the mask and part images
        # if eval_masks or eval_parts:
        #     mask, parts = renderer(pred_vertices, pred_camera)

        # Mask evaluation (for LSP)
        if eval_masks:
            center = batch['center'].cpu().numpy()
            scale = batch['scale'].cpu().numpy()
            # Dimensions of original image
            orig_shape = batch['orig_shape'].cpu().numpy()
            for i in range(curr_batch_size):
                # After rendering, convert imate back to original resolution
                pred_mask = uncrop(mask[i].cpu().numpy(), center[i], scale[i], orig_shape[i]) > 0
                # Load gt mask
                gt_mask = cv2.imread(os.path.join(annot_path, batch['maskname'][i]), 0) > 0
                # Evaluation consistent with the original UP-3D code
                accuracy += (gt_mask == pred_mask).sum()
                pixel_count += np.prod(np.array(gt_mask.shape))
                for c in range(2):
                    cgt = gt_mask == c
                    cpred = pred_mask == c
                    tp[c] += (cgt & cpred).sum()
                    fp[c] +=  (~cgt & cpred).sum()
                    fn[c] +=  (cgt & ~cpred).sum()
                f1 = 2 * tp / (2 * tp + fp + fn)

        # Part evaluation (for LSP)
        if eval_parts:
            center = batch['center'].cpu().numpy()
            scale = batch['scale'].cpu().numpy()
            orig_shape = batch['orig_shape'].cpu().numpy()
            for i in range(curr_batch_size):
                pred_parts = uncrop(parts[i].cpu().numpy().astype(np.uint8), center[i], scale[i], orig_shape[i])
                # Load gt part segmentation
                gt_parts = cv2.imread(os.path.join(annot_path, batch['partname'][i]), 0)
                # Evaluation consistent with the original UP-3D code
                # 6 parts + background
                for c in range(7):
                   cgt = gt_parts == c
                   cpred = pred_parts == c
                   cpred[gt_parts == 255] = 0
                   parts_tp[c] += (cgt & cpred).sum()
                   parts_fp[c] +=  (~cgt & cpred).sum()
                   parts_fn[c] +=  (cgt & ~cpred).sum()
                gt_parts[gt_parts == 255] = 0
                pred_parts[pred_parts == 255] = 0
                parts_f1 = 2 * parts_tp / (2 * parts_tp + parts_fp + parts_fn)
                parts_accuracy += (gt_parts == pred_parts).sum()
                parts_pixel_count += np.prod(np.array(gt_parts.shape))

        # Print intermediate results during evaluation
        if bVerbose:
            if step % log_freq == log_freq - 1:
                if eval_pose:
                    print('MPJPE: ' + str(1000 * mpjpe[:step * batch_size].mean()))
                    print('Reconstruction Error: ' + str(1000 * recon_err[:step * batch_size].mean()))
                    print()
                if eval_masks:
                    print('Accuracy: ', accuracy / pixel_count)
                    print('F1: ', f1.mean())
                    print()
                if eval_parts:
                    print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
                    print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
                    print()

        # if step==3:     #Debug
        #     break
    # Save reconstructions to a file for further processing
    if save_results:
        np.savez(result_file, pred_joints=pred_joints, pose=smpl_pose, betas=smpl_betas, camera=smpl_camera)
    # Print final results during evaluation

    if bVerbose:
        print('*** Final Results ***')
        print()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



