eft/apps/evalfrompkl.py [39:262]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint')
parser.add_argument('--dataset', default='h36m-p1', choices=['h36m-p1', 'h36m-p2', 'lsp', '3dpw', '3dpw-vibe', 'mpi-inf-3dhp'], help='Choose evaluation dataset')
parser.add_argument('--log_freq', default=50, type=int, help='Frequency of printing intermediate results')
parser.add_argument('--batch_size', default=1, help='Batch size for testing')
parser.add_argument('--shuffle', default=False, action='store_true', help='Shuffle data')
parser.add_argument('--num_workers', default=4, type=int, help='Number of processes for data loading')
parser.add_argument('--result_file', default=None, help='If set, save detections to a .npz file')


g_smpl_neutral = None
g_smpl_male = None
g_smpl_female = None


def run_evaluation(model, dataset_name, dataset, result_file,
                   batch_size=1, img_res=224, 
                   num_workers=32, shuffle=False, log_freq=50, bVerbose= True):
    """Run evaluation on the datasets and metrics we report in the paper. """

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    # # Transfer model to the GPU
    # model.to(device)

    # Load SMPL model
    global g_smpl_neutral, g_smpl_male, g_smpl_female
    if g_smpl_neutral is None:
        g_smpl_neutral = SMPL(config.SMPL_MODEL_DIR,
                            create_transl=False).to(device)
        g_smpl_male = SMPL(config.SMPL_MODEL_DIR,
                        gender='male',
                        create_transl=False).to(device)
        g_smpl_female = SMPL(config.SMPL_MODEL_DIR,
                        gender='female',
                        create_transl=False).to(device)

        smpl_neutral = g_smpl_neutral
        smpl_male = g_smpl_male
        smpl_female = g_smpl_female
    else:
        smpl_neutral = g_smpl_neutral
        smpl_male = g_smpl_male
        smpl_female = g_smpl_female

    
    # renderer = PartRenderer()
    
    # Regressor for H36m joints
    J_regressor = torch.from_numpy(np.load(config.JOINT_REGRESSOR_H36M)).float()
    
    save_results = result_file is not None
    # Disable shuffling if you want to save the results
    if save_results:
        shuffle=False
    # Create dataloader for the dataset
    data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
    
    # Pose metrics
    # MPJPE and Reconstruction error for the non-parametric and parametric shapes
    # mpjpe = np.zeros(len(dataset))
    # recon_err = np.zeros(len(dataset))
    quant_mpjpe = {}#np.zeros(len(dataset))
    quant_recon_err = {}#np.zeros(len(dataset))
    mpjpe = np.zeros(len(dataset))
    recon_err = np.zeros(len(dataset))

    mpjpe_smpl = np.zeros(len(dataset))
    recon_err_smpl = np.zeros(len(dataset))

    # Shape metrics
    # Mean per-vertex error
    shape_err = np.zeros(len(dataset))
    shape_err_smpl = np.zeros(len(dataset))

    # Mask and part metrics
    # Accuracy
    accuracy = 0.
    parts_accuracy = 0.
    # True positive, false positive and false negative
    tp = np.zeros((2,1))
    fp = np.zeros((2,1))
    fn = np.zeros((2,1))
    parts_tp = np.zeros((7,1))
    parts_fp = np.zeros((7,1))
    parts_fn = np.zeros((7,1))
    # Pixel count accumulators
    pixel_count = 0
    parts_pixel_count = 0

    # Store SMPL parameters
    smpl_pose = np.zeros((len(dataset), 72))
    smpl_betas = np.zeros((len(dataset), 10))
    smpl_camera = np.zeros((len(dataset), 3))
    pred_joints = np.zeros((len(dataset), 17, 3))

    eval_pose = False
    eval_masks = False
    eval_parts = False
    # Choose appropriate evaluation for each dataset
    if dataset_name == 'h36m-p1' or dataset_name == 'h36m-p2' or dataset_name == '3dpw' or dataset_name == '3dpw-vibe' or dataset_name == 'mpi-inf-3dhp':
        eval_pose = True
    elif dataset_name == 'lsp':
        eval_masks = True
        eval_parts = True
        annot_path = config.DATASET_FOLDERS['upi-s1h']

    joint_mapper_h36m = constants.H36M_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.H36M_TO_J14
    joint_mapper_gt = constants.J24_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.J24_TO_J14
    # Iterate over the entire dataset
    # cnt =0
    for step, batch in enumerate(tqdm(data_loader, desc='Eval', total=len(data_loader))):
        # Get ground truth annotations from the batch

        # imgName = batch['imgname'][0]
        # seqName = os.path.basename ( os.path.dirname(imgName) )

        gt_pose = batch['pose'].to(device)
        gt_betas = batch['betas'].to(device)
        gt_vertices = smpl_neutral(betas=gt_betas, body_pose=gt_pose[:, 3:], global_orient=gt_pose[:, :3]).vertices
        images = batch['img'].to(device)
        gender = batch['gender'].to(device)
        curr_batch_size = images.shape[0]
        

        bLoadFromFile = True
        missingPkl = False
        if bLoadFromFile:
            # pklDir= '/run/media/hjoo/disk/data/cvpr2020_eft_researchoutput/0_SPIN/0_exemplarOutput/04-22_3dpw_test_with8143_iter10'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1336_iter5'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1039_iter5'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1336_iter10'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1336_iter3'
            pklDir= '/run/media/hjoo/disk/data/cvpr2020_eft_researchoutput/0_SPIN/0_exemplarOutput/05-24_3dpw_test_with1336_iterUpto20' 
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with1336_iterUpto50_thr2e4'
            
            

            
            
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_smplify_3dpwtest_from1336'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_smplify_3dpwtest_from7640'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_smplify_3dpwtest_from5992'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with1644_h36m_thr2e4'
            
            #New test with LSP Init
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_smplify_3dpwtest_from732_lsp'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with732_lsp_withHips'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with732_lsp_noHips'

            #New test with MPII start
                        

            #SMPLify
            pklDir= '/private/home/hjoo/spinOut/05-28_3dpw_test_smplify_3dpwtest_from3097_best'
            pklDir= '/private/home/hjoo/spinOut/05-31_3dpw_test_smplify_3dpwTest_bestW3DPW_from8653'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_smplify_3dpwtest_from35_mpii'

            #EFT
            pklDir= '/private/home/hjoo/spinOut/05-28_3dpw_test_with35_mpii_noHips'
            pklDir= '/private/home/hjoo/spinOut/05-31_3dpw_test_3dpwTest_bestW3DPW_from8653'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with35_mpii_withHips'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with35_mpii_noHips'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with7640_iterUpto50_thr2e4'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with5992_iterUpto50_thr2e4'
            pklDir= '/private/home/hjoo/spinOut/05-28_3dpw_test_byeft_with3097_best_noHips'
            


            #Rebuttal Additional Ablation
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_layer4only'       #Layer 4 only
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_afterResOnly'     #HMR FC part only
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_allResLayers'     #Res Layers
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_layer4andLayer'       #layer4 + HMR FC part


            #Rebuttal Additional Ablation (more)
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_onlyRes_withconv1'       #All resnet
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_all'       #no freezing
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_decOnly'       #The last regression layer
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_fc2Later'       #The last regression layer

            

            #Restart Some verification
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_ablation_noFreez'       #The last regression layer
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_again_noFreez'       #Original. No freeze. For debug
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_all'       #Original. No freeze. For debug


            #Rebuttal: Real Ablation
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyRes_withconv1'       #Optimizing Res50. Freeze HMR FC
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyAfterRes'       #Optimizing HMR FC part. Freeze Res50

            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_decOnly'       #Free all except the last layer of HMR 
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyLayer4'       #Optimzing only Layer4 of ResNet

            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_fc2Later'          #HMR FC2 and layer
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyRes50LastConv'             #Last Conv of Res50
           
            #Ablation: SMPLify
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noPrior'            
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noCamFirst'             
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noCamFirst_noPrior'      
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noAnglePrior'            
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noPosePrior'             


            #CVPR 2021. New Start (old 3DPW)
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with7640_coco3d'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with8377_cocoAl_h36_inf_3dpw'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with6814_cocoAl_h36_inf'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with5992_cocoAl'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_35_mpii'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_1644_h36m'


            #CVPR 2021. New Start (old 3DPW)
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with8377_cocoAl_h36_inf_3dpw'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with6814_cocoAl_h36_inf'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with7640_coco3d'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_732_lsp'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_35_mpii'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with5992_cocoAl'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_1644_h36m'
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



eft/apps/evalfrompkl_hmr.py [40:262]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint')
parser.add_argument('--dataset', default='h36m-p1', choices=['h36m-p1', 'h36m-p2', 'lsp', '3dpw', '3dpw-vibe', 'mpi-inf-3dhp'], help='Choose evaluation dataset')
parser.add_argument('--log_freq', default=50, type=int, help='Frequency of printing intermediate results')
parser.add_argument('--batch_size', default=1, help='Batch size for testing')
parser.add_argument('--shuffle', default=False, action='store_true', help='Shuffle data')
parser.add_argument('--num_workers', default=4, type=int, help='Number of processes for data loading')
parser.add_argument('--result_file', default=None, help='If set, save detections to a .npz file')


g_smpl_neutral = None
g_smpl_male = None
g_smpl_female = None


def run_evaluation(model, dataset_name, dataset, result_file,
                   batch_size=1, img_res=224, 
                   num_workers=32, shuffle=False, log_freq=50, bVerbose= True):
    """Run evaluation on the datasets and metrics we report in the paper. """

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    # # Transfer model to the GPU
    # model.to(device)

    # Load SMPL model
    global g_smpl_neutral, g_smpl_male, g_smpl_female
    if g_smpl_neutral is None:
        g_smpl_neutral = SMPL(config.SMPL_MODEL_DIR,
                            create_transl=False).to(device)
        g_smpl_male = SMPL(config.SMPL_MODEL_DIR,
                        gender='male',
                        create_transl=False).to(device)
        g_smpl_female = SMPL(config.SMPL_MODEL_DIR,
                        gender='female',
                        create_transl=False).to(device)

        smpl_neutral = g_smpl_neutral
        smpl_male = g_smpl_male
        smpl_female = g_smpl_female
    else:
        smpl_neutral = g_smpl_neutral
        smpl_male = g_smpl_male
        smpl_female = g_smpl_female

    
    # renderer = PartRenderer()
    
    # Regressor for H36m joints
    J_regressor = torch.from_numpy(np.load(config.JOINT_REGRESSOR_H36M)).float()
    
    save_results = result_file is not None
    # Disable shuffling if you want to save the results
    if save_results:
        shuffle=False
    # Create dataloader for the dataset
    data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
    
    # Pose metrics
    # MPJPE and Reconstruction error for the non-parametric and parametric shapes
    # mpjpe = np.zeros(len(dataset))
    # recon_err = np.zeros(len(dataset))
    quant_mpjpe = {}#np.zeros(len(dataset))
    quant_recon_err = {}#np.zeros(len(dataset))
    mpjpe = np.zeros(len(dataset))
    recon_err = np.zeros(len(dataset))

    mpjpe_smpl = np.zeros(len(dataset))
    recon_err_smpl = np.zeros(len(dataset))

    # Shape metrics
    # Mean per-vertex error
    shape_err = np.zeros(len(dataset))
    shape_err_smpl = np.zeros(len(dataset))

    # Mask and part metrics
    # Accuracy
    accuracy = 0.
    parts_accuracy = 0.
    # True positive, false positive and false negative
    tp = np.zeros((2,1))
    fp = np.zeros((2,1))
    fn = np.zeros((2,1))
    parts_tp = np.zeros((7,1))
    parts_fp = np.zeros((7,1))
    parts_fn = np.zeros((7,1))
    # Pixel count accumulators
    pixel_count = 0
    parts_pixel_count = 0

    # Store SMPL parameters
    smpl_pose = np.zeros((len(dataset), 72))
    smpl_betas = np.zeros((len(dataset), 10))
    smpl_camera = np.zeros((len(dataset), 3))
    pred_joints = np.zeros((len(dataset), 17, 3))

    eval_pose = False
    eval_masks = False
    eval_parts = False
    # Choose appropriate evaluation for each dataset
    if dataset_name == 'h36m-p1' or dataset_name == 'h36m-p2' or dataset_name == '3dpw' or dataset_name == '3dpw-vibe' or dataset_name == 'mpi-inf-3dhp':
        eval_pose = True
    elif dataset_name == 'lsp':
        eval_masks = True
        eval_parts = True
        annot_path = config.DATASET_FOLDERS['upi-s1h']

    joint_mapper_h36m = constants.H36M_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.H36M_TO_J14
    joint_mapper_gt = constants.J24_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.J24_TO_J14
    # Iterate over the entire dataset
    # cnt =0
    for step, batch in enumerate(tqdm(data_loader, desc='Eval', total=len(data_loader))):
        # Get ground truth annotations from the batch

        # imgName = batch['imgname'][0]
        # seqName = os.path.basename ( os.path.dirname(imgName) )

        gt_pose = batch['pose'].to(device)
        gt_betas = batch['betas'].to(device)
        gt_vertices = smpl_neutral(betas=gt_betas, body_pose=gt_pose[:, 3:], global_orient=gt_pose[:, :3]).vertices
        images = batch['img'].to(device)
        gender = batch['gender'].to(device)
        curr_batch_size = images.shape[0]

        bLoadFromFile = True
        missingPkl = False
        if bLoadFromFile:
            # pklDir= '/run/media/hjoo/disk/data/cvpr2020_eft_researchoutput/0_SPIN/0_exemplarOutput/04-22_3dpw_test_with8143_iter10'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1336_iter5'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1039_iter5'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1336_iter10'
            pklDir= '/private/home/hjoo/spinOut/05-11_3dpw_test_with1336_iter3'
            pklDir= '/run/media/hjoo/disk/data/cvpr2020_eft_researchoutput/0_SPIN/0_exemplarOutput/05-24_3dpw_test_with1336_iterUpto20' 
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with1336_iterUpto50_thr2e4'
            
            

            
            
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_smplify_3dpwtest_from1336'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_smplify_3dpwtest_from7640'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_smplify_3dpwtest_from5992'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with1644_h36m_thr2e4'
            
            #New test with LSP Init
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_smplify_3dpwtest_from732_lsp'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with732_lsp_withHips'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with732_lsp_noHips'

            #New test with MPII start
                        

            #SMPLify
            pklDir= '/private/home/hjoo/spinOut/05-28_3dpw_test_smplify_3dpwtest_from3097_best'
            pklDir= '/private/home/hjoo/spinOut/05-31_3dpw_test_smplify_3dpwTest_bestW3DPW_from8653'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_smplify_3dpwtest_from35_mpii'

            #EFT
            pklDir= '/private/home/hjoo/spinOut/05-28_3dpw_test_with35_mpii_noHips'
            pklDir= '/private/home/hjoo/spinOut/05-31_3dpw_test_3dpwTest_bestW3DPW_from8653'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with35_mpii_withHips'
            pklDir= '/private/home/hjoo/spinOut/05-27_3dpw_test_with35_mpii_noHips'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with7640_iterUpto50_thr2e4'
            pklDir= '/private/home/hjoo/spinOut/05-25_3dpw_test_with5992_iterUpto50_thr2e4'
            pklDir= '/private/home/hjoo/spinOut/05-28_3dpw_test_byeft_with3097_best_noHips'
            


            #Rebuttal Additional Ablation
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_layer4only'       #Layer 4 only
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_afterResOnly'     #HMR FC part only
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_allResLayers'     #Res Layers
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_layer4andLayer'       #layer4 + HMR FC part


            #Rebuttal Additional Ablation (more)
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_onlyRes_withconv1'       #All resnet
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_all'       #no freezing
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_decOnly'       #The last regression layer
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_layerteset_fc2Later'       #The last regression layer

            

            #Restart Some verification
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_ablation_ablation_noFreez'       #The last regression layer
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_3dpwTest_from8653_again_noFreez'       #Original. No freeze. For debug
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_all'       #Original. No freeze. For debug


            #Rebuttal: Real Ablation
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyRes_withconv1'       #Optimizing Res50. Freeze HMR FC
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyAfterRes'       #Optimizing HMR FC part. Freeze Res50

            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_decOnly'       #Free all except the last layer of HMR 
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyLayer4'       #Optimzing only Layer4 of ResNet

            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_fc2Later'          #HMR FC2 and layer
            pklDir= '/private/home/hjoo/spinOut/08-08_3dpw_test_abl_from8653_ablation_layerteset_onlyRes50LastConv'             #Last Conv of Res50
           
            #Ablation: SMPLify
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noPrior'            
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noCamFirst'             
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noCamFirst_noPrior'      
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noAnglePrior'            
            pklDir= '/private/home/hjoo/spinOut/08-10_3dpw_test_smplify_abl_3dpwTest_from8653_noPosePrior'             


            #CVPR 2021. New Start (old 3DPW)
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with7640_coco3d'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with8377_cocoAl_h36_inf_3dpw'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with6814_cocoAl_h36_inf'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_with5992_cocoAl'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_35_mpii'
            pklDir= '/private/home/hjoo/spinOut/10-31_3dpw_test_1644_h36m'


            #CVPR 2021. New Start (old 3DPW)
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with8377_cocoAl_h36_inf_3dpw'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with6814_cocoAl_h36_inf'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with7640_coco3d'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_732_lsp'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_35_mpii'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_with5992_cocoAl'
            pklDir= '/private/home/hjoo/spinOut/11-01_3dpw_test__vibe_1644_h36m'
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



