def run_evaluation()

in eft/apps/eval.py [0:0]


def run_evaluation(model, dataset_name, dataset, result_file,
                   batch_size=32, img_res=224, 
                   num_workers=32, shuffle=False, log_freq=50, bVerbose= True):
    """Run evaluation on the datasets and metrics we report in the paper. """

    print(dataset_name)


    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    # # Transfer model to the GPU
    # model.to(device)

    # Load SMPL model
    global g_smpl_neutral, g_smpl_male, g_smpl_female
    if g_smpl_neutral is None:
        g_smpl_neutral = SMPL(config.SMPL_MODEL_DIR,
                            create_transl=False).to(device)
        
        # g_smpl_neutral = SMPLX(config.SMPL_MODEL_DIR,
        #                     create_transl=False).to(device)
                                     
        g_smpl_male = SMPL(config.SMPL_MODEL_DIR,
                        gender='male',
                        create_transl=False).to(device)
        g_smpl_female = SMPL(config.SMPL_MODEL_DIR,
                        gender='female',
                        create_transl=False).to(device)

        smpl_neutral = g_smpl_neutral
        smpl_male = g_smpl_male
        smpl_female = g_smpl_female
    else:
        smpl_neutral = g_smpl_neutral
        smpl_male = g_smpl_male
        smpl_female = g_smpl_female

    # renderer = PartRenderer()    
    # Regressor for H36m joints
    J_regressor = torch.from_numpy(np.load(config.JOINT_REGRESSOR_H36M)).float()
    
    save_results = result_file is not None
    # Disable shuffling if you want to save the results
    if save_results:
        shuffle=False
    # Create dataloader for the dataset
    data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
    
    # Pose metrics
    # MPJPE and Reconstruction error for the non-parametric and parametric shapes
    # mpjpe = np.zeros(len(dataset))
    # recon_err = np.zeros(len(dataset))
    quant_mpjpe = {}#np.zeros(len(dataset))
    quant_recon_err = {}#np.zeros(len(dataset))
    mpjpe = np.zeros(len(dataset))
    recon_err = np.zeros(len(dataset))

    mpjpe_smpl = np.zeros(len(dataset))
    recon_err_smpl = np.zeros(len(dataset))

    # Shape metrics
    # Mean per-vertex error
    shape_err = np.zeros(len(dataset))
    shape_err_smpl = np.zeros(len(dataset))

    # Mask and part metrics
    # Accuracy
    accuracy = 0.
    parts_accuracy = 0.
    # True positive, false positive and false negative
    tp = np.zeros((2,1))
    fp = np.zeros((2,1))
    fn = np.zeros((2,1))
    parts_tp = np.zeros((7,1))
    parts_fp = np.zeros((7,1))
    parts_fn = np.zeros((7,1))
    # Pixel count accumulators
    pixel_count = 0
    parts_pixel_count = 0

    # Store SMPL parameters
    smpl_pose = np.zeros((len(dataset), 72))
    smpl_betas = np.zeros((len(dataset), 10))
    smpl_camera = np.zeros((len(dataset), 3))
    pred_joints = np.zeros((len(dataset), 17, 3))

    eval_pose = False
    eval_masks = False
    eval_parts = False
    # Choose appropriate evaluation for each dataset
    if dataset_name == 'h36m-p1' or dataset_name == 'h36m-p2'  or dataset_name == 'lspet-test' \
                        or dataset_name == '3dpw' or dataset_name == 'coco2014-val-3d-amt'  or dataset_name == 'ochuman-test' \
                        or dataset_name == '3dpw-vibe'  or dataset_name == '3dpw-crop' or dataset_name == '3dpw-headcrop' or dataset_name == 'mpi-inf-3dhp-test':
        eval_pose = True
    elif dataset_name == 'lsp':
        eval_masks = True
        eval_parts = True
        annot_path = config.DATASET_FOLDERS['upi-s1h']

    joint_mapper_h36m = constants.H36M_TO_J17 if dataset_name == 'mpi-inf-3dhp-test' else constants.H36M_TO_J14
    joint_mapper_gt = constants.J24_TO_J17 if dataset_name == 'mpi-inf-3dhp-test' else constants.J24_TO_J14
    # Iterate over the entire dataset
    for step, batch in enumerate(tqdm(data_loader, desc='Eval', total=len(data_loader))):
        # Get ground truth annotations from the batch

        imgName = batch['imgname'][0]
        seqName = os.path.basename ( os.path.dirname(imgName) )

        gt_pose = batch['pose'].to(device)
        gt_betas = batch['betas'].to(device)
        gt_vertices = smpl_neutral(betas=gt_betas, body_pose=gt_pose[:, 3:], global_orient=gt_pose[:, :3]).vertices
        images = batch['img'].to(device)
        gender = batch['gender'].to(device)
        curr_batch_size = images.shape[0]

        # gt_bbox_scale = batch['scale'].cpu().numpy()
        # gt_bbox_center = batch['center'].cpu().numpy()
        
        with torch.no_grad():
            pred_rotmat, pred_betas, pred_camera = model(images)
            pred_output = smpl_neutral(betas=pred_betas, body_pose=pred_rotmat[:,1:], global_orient=pred_rotmat[:,0].unsqueeze(1), pose2rot=False)
            pred_vertices = pred_output.vertices

        if save_results:
            rot_pad = torch.tensor([0,0,1], dtype=torch.float32, device=device).view(1,3,1)
            rotmat = torch.cat((pred_rotmat.view(-1, 3, 3), rot_pad.expand(curr_batch_size * 24, -1, -1)), dim=-1)
            pred_pose = tgm.rotation_matrix_to_angle_axis(rotmat).contiguous().view(-1, 72)
            smpl_pose[step * batch_size:step * batch_size + curr_batch_size, :] = pred_pose.cpu().numpy()
            smpl_betas[step * batch_size:step * batch_size + curr_batch_size, :]  = pred_betas.cpu().numpy()
            smpl_camera[step * batch_size:step * batch_size + curr_batch_size, :]  = pred_camera.cpu().numpy()

    
        # 3D pose evaluation
        if eval_pose:
            # Regressor broadcasting
            J_regressor_batch = J_regressor[None, :].expand(pred_vertices.shape[0], -1, -1).to(device)
            # Get 14 ground truth joints
            if 'h36m' in dataset_name or 'mpi-inf' in dataset_name:
                gt_keypoints_3d = batch['pose_3d'].cuda()
                gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_gt, :-1]
            # For 3DPW get the 14 common joints from the rendered shape
            else:
                gt_vertices = smpl_male(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 
                gt_vertices_female = smpl_female(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 

                if seqName=='val2014':
                    gt_vertices_neutral = smpl_neutral(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices 
                    gt_vertices = gt_vertices_neutral
                else:
                    gt_vertices[gender==1, :, :] = gt_vertices_female[gender==1, :, :]
                gt_keypoints_3d = torch.matmul(J_regressor_batch, gt_vertices)
                gt_pelvis = gt_keypoints_3d[:, [0],:].clone()
                gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_h36m, :]
                gt_keypoints_3d = gt_keypoints_3d - gt_pelvis             


            # Get 14 predicted joints from the mesh
            pred_keypoints_3d = torch.matmul(J_regressor_batch, pred_vertices)
            if save_results:
                pred_joints[step * batch_size:step * batch_size + curr_batch_size, :, :]  = pred_keypoints_3d.cpu().numpy()
            pred_pelvis = pred_keypoints_3d[:, [0],:].clone()
            pred_keypoints_3d = pred_keypoints_3d[:, joint_mapper_h36m, :]
            pred_keypoints_3d = pred_keypoints_3d - pred_pelvis 

            # Absolute error (MPJPE)
            error = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()

            error_upper = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
            # mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error

            # Reconstuction_error
            r_error = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)

            r_error_upper = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)
            # recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error

            #Visualize GT vs prediction
            if False:
                from renderer import viewer2D
                from renderer import glViewer
                import humanModelViewer

                gt_cam_param = batch['cam_param'].cpu().numpy()
                pred_cam_param = pred_camera.detach().cpu().numpy()

                batchNum = gt_pose.shape[0]
                for i in range(batchNum):
                    curImgVis = deNormalizeBatchImg(images[i].cpu())
                    viewer2D.ImShow(curImgVis, name='rawIm', scale=1.0)

                    #move mesh to bbox space
                    vert_gt = gt_vertices[i].cpu().numpy()
                    vert_gt = convert_smpl_to_bbox(vert_gt, gt_cam_param[i][0], gt_cam_param[i][1:])

                    vert_pred = pred_vertices[i].cpu().numpy()
                    vert_pred = convert_smpl_to_bbox(vert_pred, pred_cam_param[i][0], pred_cam_param[i][1:])

                    smpl_face = humanModelViewer.GetSMPLFace()
                    # meshes_gt = {'ver': gt_vertices[i].cpu().numpy()*100, 'f': smpl_face, 'color': (255,0,0)}
                    # meshes_pred = {'ver': pred_vertices[i].cpu().numpy()*100, 'f': smpl_face, 'color': (0,255,0)}

                    meshes_gt = {'ver': vert_gt, 'f': smpl_face, 'color': (200,50,50)}
                    meshes_pred = {'ver': vert_pred, 'f': smpl_face, 'color': (50,200,50)}

                    glViewer.setMeshData([meshes_gt, meshes_pred], bComputeNormal= True)
                    glViewer.setBackgroundTexture(curImgVis)       #Vis raw video as background
                    glViewer.setWindowSize(curImgVis.shape[1]*5, curImgVis.shape[0]*5)
                    glViewer.SetOrthoCamera(True)
                    glViewer.show(0)
                    

            for ii, p in enumerate(batch['imgname'][:len(r_error)]):
                seqName = os.path.basename( os.path.dirname(p))
                # quant_mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error
                if seqName not in quant_mpjpe.keys():
                    quant_mpjpe[seqName] = []
                    quant_recon_err[seqName] = []
                
                quant_mpjpe[seqName].append(error[ii]) 
                quant_recon_err[seqName].append(r_error[ii])


            #Visualize GT mesh and Pred Sekeleton
            if False:
                from renderer import viewer2D
                from renderer import glViewer
                import humanModelViewer

                gt_keypoints_3d_vis = gt_keypoints_3d.cpu().numpy()
                gt_keypoints_3d_vis = np.reshape(gt_keypoints_3d_vis, (gt_keypoints_3d_vis.shape[0],-1))        #N,14x3
                gt_keypoints_3d_vis = np.swapaxes(gt_keypoints_3d_vis, 0,1) *100

                pred_keypoints_3d_vis = pred_keypoints_3d.cpu().numpy()
                pred_keypoints_3d_vis = np.reshape(pred_keypoints_3d_vis, (pred_keypoints_3d_vis.shape[0],-1))        #N,14x3
                pred_keypoints_3d_vis = np.swapaxes(pred_keypoints_3d_vis, 0,1) *100
                # output_sample = output_sample[ : , np.newaxis]*0.1
                # gt_sample = gt_sample[: , np.newaxis]*0.1
                # (skelNum, dim, frames)
                for f in range(gt_keypoints_3d_vis.shape[1]):
                    glViewer.setSkeleton( [gt_keypoints_3d_vis[:,[f]], pred_keypoints_3d_vis[:,[f]]] ,jointType='smplcoco')#(skelNum, dim, frames)
                    glViewer.show(0)


            # Reconstuction_error
            # quant_recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error

            list_mpjpe = np.hstack([ quant_mpjpe[k] for k in quant_mpjpe])
            list_reconError = np.hstack([ quant_recon_err[k] for k in quant_recon_err])
            if bVerbose:
                print(">>> {} : MPJPE {:.02f} mm, error: {:.02f} mm | Total MPJPE {:.02f} mm, error {:.02f} mm".format(seqName, np.mean(error)*1000, np.mean(r_error)*1000, np.hstack(list_mpjpe).mean()*1000, np.hstack(list_reconError).mean()*1000) )

            # print("MPJPE {}, error: {}".format(np.mean(error)*100, np.mean(r_error)*100))

        # If mask or part evaluation, render the mask and part images
        # if eval_masks or eval_parts:
        #     mask, parts = renderer(pred_vertices, pred_camera)

        # Mask evaluation (for LSP)
        if eval_masks:
            center = batch['center'].cpu().numpy()
            scale = batch['scale'].cpu().numpy()
            # Dimensions of original image
            orig_shape = batch['orig_shape'].cpu().numpy()
            for i in range(curr_batch_size):
                # After rendering, convert imate back to original resolution
                pred_mask = uncrop(mask[i].cpu().numpy(), center[i], scale[i], orig_shape[i]) > 0
                # Load gt mask
                gt_mask = cv2.imread(os.path.join(annot_path, batch['maskname'][i]), 0) > 0
                # Evaluation consistent with the original UP-3D code
                accuracy += (gt_mask == pred_mask).sum()
                pixel_count += np.prod(np.array(gt_mask.shape))
                for c in range(2):
                    cgt = gt_mask == c
                    cpred = pred_mask == c
                    tp[c] += (cgt & cpred).sum()
                    fp[c] +=  (~cgt & cpred).sum()
                    fn[c] +=  (cgt & ~cpred).sum()
                f1 = 2 * tp / (2 * tp + fp + fn)

        # Part evaluation (for LSP)
        if eval_parts:
            center = batch['center'].cpu().numpy()
            scale = batch['scale'].cpu().numpy()
            orig_shape = batch['orig_shape'].cpu().numpy()
            for i in range(curr_batch_size):
                pred_parts = uncrop(parts[i].cpu().numpy().astype(np.uint8), center[i], scale[i], orig_shape[i])
                # Load gt part segmentation
                gt_parts = cv2.imread(os.path.join(annot_path, batch['partname'][i]), 0)
                # Evaluation consistent with the original UP-3D code
                # 6 parts + background
                for c in range(7):
                   cgt = gt_parts == c
                   cpred = pred_parts == c
                   cpred[gt_parts == 255] = 0
                   parts_tp[c] += (cgt & cpred).sum()
                   parts_fp[c] +=  (~cgt & cpred).sum()
                   parts_fn[c] +=  (cgt & ~cpred).sum()
                gt_parts[gt_parts == 255] = 0
                pred_parts[pred_parts == 255] = 0
                parts_f1 = 2 * parts_tp / (2 * parts_tp + parts_fp + parts_fn)
                parts_accuracy += (gt_parts == pred_parts).sum()
                parts_pixel_count += np.prod(np.array(gt_parts.shape))

        # Print intermediate results during evaluation
        if bVerbose:
            if step % log_freq == log_freq - 1:
                if eval_pose:
                    print('MPJPE: ' + str(1000 * mpjpe[:step * batch_size].mean()))
                    print('Reconstruction Error: ' + str(1000 * recon_err[:step * batch_size].mean()))
                    print()
                if eval_masks:
                    print('Accuracy: ', accuracy / pixel_count)
                    print('F1: ', f1.mean())
                    print()
                if eval_parts:
                    print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
                    print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
                    print()

        # if step==3:     #Debug
        #     break
    # Save reconstructions to a file for further processing
    if save_results:
        np.savez(result_file, pred_joints=pred_joints, pose=smpl_pose, betas=smpl_betas, camera=smpl_camera)
    # Print final results during evaluation

    if bVerbose:
        print('*** Final Results ***')
        print()
    

    evalLog ={}

    if eval_pose:
        # if bVerbose:
        #     print('MPJPE: ' + str(1000 * mpjpe.mean()))
        #     print('Reconstruction Error: ' + str(1000 * recon_err.mean()))
        #     print()
        list_mpjpe = np.hstack([ quant_mpjpe[k] for k in quant_mpjpe])
        list_reconError = np.hstack([ quant_recon_err[k] for k in quant_recon_err])

        output_str ='SeqNames; '
        for seq in quant_mpjpe:
            output_str += seq + ';'
        output_str +='\n MPJPE; '
        quant_mpjpe_avg_mm = np.hstack(list_mpjpe).mean()*1000
        output_str += "Avg {:.02f} mm; ".format( quant_mpjpe_avg_mm)
        for seq in quant_mpjpe:
            output_str += '{:.02f}; '.format(1000 * np.hstack(quant_mpjpe[seq]).mean())


        output_str +='\n Recon Error; '
        quant_recon_error_avg_mm = np.hstack(list_reconError).mean()*1000
        output_str +="Avg {:.02f}mm; ".format( quant_recon_error_avg_mm )
        for seq in quant_recon_err:
            output_str += '{:.02f}; '.format(1000 * np.hstack(quant_recon_err[seq]).mean())
        if bVerbose:
            print(output_str)
        else:
            print(">>>  Test on 3DPW: MPJPE: {} | quant_recon_error_avg_mm: {}".format(quant_mpjpe_avg_mm, quant_recon_error_avg_mm) )

        #Save output to dict
        # evalLog['checkpoint']= args.checkpoint
        evalLog['testdb'] = dataset_name
        evalLog['datasize'] = len(data_loader.dataset)
        
        for seq in quant_mpjpe:
            quant_mpjpe[seq] = 1000 * np.hstack(quant_mpjpe[seq]).mean()
        for seq in quant_recon_err:
            quant_recon_err[seq] = 1000 * np.hstack(quant_recon_err[seq]).mean()

        evalLog['quant_mpjpe'] = quant_mpjpe              #MPJPE
        evalLog['quant_recon_err']= quant_recon_err   #PA-MPJPE
        evalLog['quant_output_logstr']= output_str   #PA-MPJPE
        

        evalLog['quant_mpjpe_avg_mm'] = quant_mpjpe_avg_mm              #MPJPE
        evalLog['quant_recon_error_avg_mm']= quant_recon_error_avg_mm   #PA-MPJPE
       
        # return quant_mpjpe_avg_mm, quant_recon_error_avg_mm, evalLog
        return evalLog

    if bVerbose:
        if eval_masks:
            print('Accuracy: ', accuracy / pixel_count)
            print('F1: ', f1.mean())
            print()
        if eval_parts:
            print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
            print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
            print()

        
    return -1       #Should return something