anticipation/anticipation/models/recognizers/future_recognizer.py [196:205]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        lfb = kwargs['lfb'] # (B, lfb_win=64, 2048)
        nB, nL, nC = lfb.size()
        x = lfb.permute(0, 2, 1)
        x = x.reshape((nB, nC, nL, 1, 1))
        # print(x.shape)
        x = self.backbone(x) # nB, nC, nL / K, 1, 1
        # print(x.shape)
        x = x.mean(2).reshape(nB, -1)
        # print(x.shape)
        pred = torch.sigmoid(self.fc(x))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



anticipation/anticipation/models/recognizers/future_recognizer.py [214:220]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        lfb = kwargs['lfb']
        nB, nL, nC = lfb.size()
        x = lfb.permute(0, 2, 1)
        x = x.reshape((nB, nC, nL, 1, 1))
        x = self.backbone(x) # nB, nC, nL / K, 1, 1
        x = x.mean(2).reshape(nB, -1)
        pred = torch.sigmoid(self.fc(x))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



