in anticipation/anticipation/datasets/epic_utils.py [0:0]
def get_trimmed_dataset(data_cfg):
if 'ann_file' not in data_cfg:
ann_files = [None]
num_dset = 1
elif isinstance(data_cfg['ann_file'], (list, tuple)):
ann_files = data_cfg['ann_file']
num_dset = len(ann_files)
else:
ann_files = [data_cfg['ann_file']]
num_dset = 1
if 'img_prefix' not in data_cfg:
img_prefixes = [None]
elif isinstance(data_cfg['img_prefix'], (list, tuple)):
img_prefixes = data_cfg['img_prefix']
else:
img_prefixes = [data_cfg['img_prefix']]
assert len(img_prefixes) == num_dset
dsets = []
for i in range(num_dset):
data_info = copy.deepcopy(data_cfg)
if ann_files[i] is not None:
data_info['ann_file'] = ann_files[i]
if img_prefixes[i] is not None:
data_info['img_prefix'] = img_prefixes[i]
dset = obj_from_dict(data_info, datasets)
dsets.append(dset)
if len(dsets) > 1:
raise ValueError("Not implemented yet")
else:
dset = dsets[0]
return dset