in variant-prediction/predict.py [0:0]
def create_parser():
parser = argparse.ArgumentParser(
description="Label a deep mutational scan with predictions from an ensemble of ESM-1v models." # noqa
)
# fmt: off
parser.add_argument(
"--model-location",
type=str,
help="PyTorch model file OR name of pretrained model to download (see README for models)",
nargs="+",
)
parser.add_argument(
"--sequence",
type=str,
help="Base sequence to which mutations were applied",
)
parser.add_argument(
"--dms-input",
type=pathlib.Path,
help="CSV file containing the deep mutational scan",
)
parser.add_argument(
"--mutation-col",
type=str,
default="mutant",
help="column in the deep mutational scan labeling the mutation as 'AiB'"
)
parser.add_argument(
"--dms-output",
type=pathlib.Path,
help="Output file containing the deep mutational scan along with predictions",
)
parser.add_argument(
"--offset-idx",
type=int,
default=0,
help="Offset of the mutation positions in `--mutation-col`"
)
parser.add_argument(
"--scoring-strategy",
type=str,
default="wt-marginals",
choices=["wt-marginals", "pseudo-ppl", "masked-marginals"],
help=""
)
parser.add_argument(
"--msa-path",
type=pathlib.Path,
help="path to MSA (required for MSA Transformer)"
)
parser.add_argument(
"--msa-samples",
type=int,
default=400,
help="number of sequences to randomly sample from the MSA"
)
# fmt: on
parser.add_argument("--nogpu", action="store_true", help="Do not use GPU even if available")
return parser