in self_supervision_benchmark/modeling/colorization/resnet_colorize_finetune_full.py [0:0]
def create_model(model, data, labels, split):
model_helper = ModelHelper(model, split)
logger.info(' | ResNet-{} {}'.format(cfg.MODEL.DEPTH, cfg.DATASET))
assert cfg.MODEL.DEPTH in BLOCK_CONFIG.keys(), \
'Block config is not defined for specified model depth. Please check.'
(n1, n2, n3, n4) = BLOCK_CONFIG[cfg.MODEL.DEPTH]
num_features = 2048
residual_block = model_helper.bottleneck_block
num_classes = cfg.MODEL.NUM_CLASSES
test_mode = False
if split in ['test', 'val']:
test_mode = True
scale = 1. / cfg.NUM_DEVICES
################################ Split #####################################
# split the input LAB channels into L and AB. The input to the colorization
# models is always L channel (even during transfer tasks).
model.net.Split(data, ['data_l', 'data_ab'], axis=1, split=[1, 2])
################################## conv1 ###################################
conv_blob = model.Conv(
'data_l', 'conv1', 1, 64, 7, stride=2, pad=3,
weight_init=('MSRAFill', {}), no_bias=1
)
bn_blob = model.SpatialBN(
conv_blob, 'res_conv1_bn', 64, epsilon=cfg.MODEL.BN_EPSILON,
momentum=cfg.MODEL.BN_MOMENTUM, is_test=test_mode,
)
relu_blob = model.Relu(bn_blob, bn_blob)
################################## pool1 ###################################
max_pool = model.MaxPool(relu_blob, 'pool1', kernel=3, stride=2, pad=1)
################################## stage2 ##################################
blob_in, dim_in = model_helper.residual_layer(
residual_block, max_pool, 64, 256, stride=1, num_blocks=n1,
prefix='res2', dim_inner=64,
)
################################## stage3 ##################################
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 512, stride=2, num_blocks=n2,
prefix='res3', dim_inner=128,
)
################################## stage4 ##################################
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 1024, stride=2, num_blocks=n3,
prefix='res4', dim_inner=256,
)
################################## stage5 ##################################
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, num_features, stride=1,
num_blocks=n4, prefix='res5', dim_inner=512,
)
################################## pool5 ###################################
pool_blob = model.AveragePool(
blob_in, 'pool5', kernel=14, stride=1
)
bn_c5 = model.SpatialBN(
pool_blob, pool_blob + '_bn', num_features,
epsilon=cfg.MODEL.BN_EPSILON, momentum=cfg.MODEL.BN_MOMENTUM,
is_test=test_mode
)
if cfg.MODEL.BN_NO_SCALE_SHIFT:
model.param_init_net.ConstantFill(
[bn_c5 + '_s'], bn_c5 + '_s', value=1.0
)
model.param_init_net.ConstantFill(
[bn_c5 + '_b'], bn_c5 + '_b', value=0.0
)
#################################### fc ####################################
blob_out = model.FC(
bn_c5, 'pred', num_features, num_classes,
weight_init=('GaussianFill', {'std': cfg.MODEL.FC_INIT_STD}),
bias_init=('ConstantFill', {'value': 0.})
)
################################## sigmoid #################################
sigmoid = model.net.Sigmoid(blob_out, 'sigmoid')
if split == 'train':
loss = model.net.SigmoidCrossEntropyLoss(
['pred', labels], 'loss', scale=scale
)
elif split in ['test', 'val']:
loss = None
return model, sigmoid, loss