def train_svm()

in tools/svm/train_svm_kfold.py [0:0]


def train_svm(opts):
    assert os.path.exists(opts.data_file), "Data file not found. Abort!"
    if not os.path.exists(opts.output_path):
        os.makedirs(opts.output_path)

    features, targets = svm_helper.load_input_data(
        opts.data_file, opts.targets_data_file
    )
    # normalize the features: N x 9216 (example shape)
    features = svm_helper.normalize_features(features)

    # parse the cost values for training the SVM on
    costs_list = svm_helper.parse_cost_list(opts.costs_list)
    logger.info('Training SVM for costs: {}'.format(costs_list))

    # classes for which SVM training should be done
    if opts.cls_list:
        cls_list = [int(cls) for cls in opts.cls_list.split(",")]
    else:
        num_classes = targets.shape[1]
        cls_list = range(num_classes)
    logger.info('Training SVM for classes: {}'.format(cls_list))

    for cls_idx in range(len(cls_list)):
        cls = cls_list[cls_idx]
        for cost_idx in range(len(costs_list)):
            cost = costs_list[cost_idx]
            out_file, ap_out_file = svm_helper.get_svm_train_output_files(
                cls, cost, opts.output_path
            )
            if os.path.exists(out_file) and os.path.exists(ap_out_file):
                logger.info('SVM model exists: {}'.format(out_file))
                logger.info('AP file exists: {}'.format(ap_out_file))
            else:
                logger.info('Training model with the cost: {}'.format(cost))
                clf = LinearSVC(
                    C=cost, class_weight={1: 2, -1: 1}, intercept_scaling=1.0,
                    verbose=1, penalty='l2', loss='squared_hinge', tol=0.0001,
                    dual=True, max_iter=2000,
                )
                cls_labels = targets[:, cls].astype(dtype=np.int32, copy=True)
                # meaning of labels in VOC/COCO original loaded target files:
                # label 0 = not present, set it to -1 as svm train target
                # label 1 = present. Make the svm train target labels as -1, 1.
                cls_labels[np.where(cls_labels == 0)] = -1
                num_positives = len(np.where(cls_labels == 1)[0])
                num_negatives = len(cls_labels) - num_positives
                logger.info('cls: {} has +ve: {} -ve: {} ratio: {}'.format(
                    cls, num_positives, num_negatives,
                    float(num_positives) / num_negatives)
                )
                logger.info('features: {} cls_labels: {}'.format(
                    features.shape, cls_labels.shape))
                ap_scores = cross_val_score(
                    clf, features, cls_labels, cv=3, scoring='average_precision'
                )
                clf.fit(features, cls_labels)
                logger.info('cls: {} cost: {} AP: {} mean:{}'.format(
                    cls, cost, ap_scores, ap_scores.mean()))
                logger.info('Saving cls cost AP to: {}'.format(ap_out_file))
                np.save(ap_out_file, np.array([ap_scores.mean()]))
                logger.info('Saving SVM model to: {}'.format(out_file))
                with open(out_file, 'wb') as fwrite:
                    pickle.dump(clf, fwrite)