in fastmri/pl_modules/data_module.py [0:0]
def add_data_specific_args(parent_parser): # pragma: no-cover
"""
Define parameters that only apply to this model
"""
parser = ArgumentParser(parents=[parent_parser], add_help=False)
# dataset arguments
parser.add_argument(
"--data_path",
default=None,
type=Path,
help="Path to fastMRI data root",
)
parser.add_argument(
"--test_path",
default=None,
type=Path,
help="Path to data for test mode. This overwrites data_path and test_split",
)
parser.add_argument(
"--challenge",
choices=("singlecoil", "multicoil"),
default="singlecoil",
type=str,
help="Which challenge to preprocess for",
)
parser.add_argument(
"--test_split",
choices=("test", "challenge"),
default="test",
type=str,
help="Which data split to use as test split",
)
parser.add_argument(
"--sample_rate",
default=None,
type=float,
help="Fraction of slices in the dataset to use (train split only). If not given all will be used. Cannot set together with volume_sample_rate.",
)
parser.add_argument(
"--volume_sample_rate",
default=None,
type=float,
help="Fraction of volumes of the dataset to use (train split only). If not given all will be used. Cannot set together with sample_rate.",
)
parser.add_argument(
"--use_dataset_cache_file",
default=True,
type=bool,
help="Whether to cache dataset metadata in a pkl file",
)
parser.add_argument(
"--combine_train_val",
default=False,
type=bool,
help="Whether to combine train and val splits for training",
)
# data loader arguments
parser.add_argument(
"--batch_size", default=1, type=int, help="Data loader batch size"
)
parser.add_argument(
"--num_workers",
default=4,
type=int,
help="Number of workers to use in data loader",
)
return parser