in scripts/scorer.py [0:0]
def evaluate(scores, labels, CLASSES):
"""
Evaluates the predicted classes w.r.t. a gold file.
"""
vocab_map = dict([(i, v) for i, v in enumerate(CLASSES)])
mlb = MultiLabelBinarizer()
mlb.fit([CLASSES])
# Hack to maintain order
mlb.classes_ = np.array(CLASSES)
gold_label = mlb.transform(labels.tolist())
pred_score = np.matrix(scores.tolist())
pred_label = (pred_score > 0.5).astype(int)
roc_auc = roc_auc_score(gold_label, pred_score, average="micro", multi_class="ovr")
f1 = f1_score(gold_label, pred_label, average="micro")
return f1, roc_auc