in scripts/make_figures.py [0:0]
def correlations(results_path, save_path, prefix):
results = load_results(results_path, f"{prefix}_pca20.json")
etas = np.array(results["etas"])
n_samples = 2000
np.random.seed(n_samples)
samples = np.random.permutation(len(etas))[:n_samples]
losses = np.array(results["train_losses"])
grad_norms = np.array(results["train_grad_norms"])
alternatives = [
("loss", "(a) Loss $\ell({\\bf w^*}^\\top {\\bf x}, y)$", losses),
("gradnorm", "(b) Gradient norm $\|\\nabla_{\\bf w^*} \ell\|_2$", grad_norms)]
f, axarr = plt.subplots(1, 2, figsize=(10, 4), sharey=True)
f.subplots_adjust(wspace=0.1)
for e, (method, xlabel, values) in enumerate(alternatives):
ax = axarr[e]
ax.scatter(values[samples], etas[samples], s=2.5, color=COLOR)
ax.set_xlabel(xlabel)
axarr[0].set_ylabel("FIL $\eta$")
plotting.savefig(os.path.join(save_path, f"{prefix}_scatter_alternatives_eta"))
plt.clf()