in scripts/make_figures.py [0:0]
def main(args):
labels = {"mnist" : ["0", "1"], "cifar10": ["Plane", "Car"]}
for dataset in ["mnist", "cifar10"]:
train = dataloading.load_dataset(
name=dataset, split="train", normalize=False,
num_classes=2, reshape=False, root=args.data_folder)
for model in ["linear", "logistic"]:
prefix = f"{dataset}_{model}"
# Histogram of etas:
eta_histogram(
args.results_path, args.save_path,
prefix, train, labels[dataset])
# Most and least leaked images:
view_images(train, args.results_path, args.save_path, prefix)
eta_overlap(args.results_path, f"{dataset}")
# Plot of eta stds vs iterations of reweighting
iterated_reweighted_etas(
args.results_path, args.save_path, f"{dataset}")
# Plot correlations of eta with other metrics
correlations(args.results_path, args.save_path, "mnist_linear")
# IWPC MSE and FIL with output pertubration
private_mse_and_fil(args.results_path, args.save_path)
# IWPC Fredrikson and whitebox attribute inversion results.
private_inversion_accuracy(args.results_path, args.save_path)
# IWPC and UCI Adult attribute inversion results as a function of
# iterations of IRFIL
for dataset in ["iwpc", "uciadult"]:
irfil_inversion(args.results_path, dataset, args.save_path)