in gala/model.py [0:0]
def __init__(self, recurrent, recurrent_input_size, hidden_size):
super(NNBase, self).__init__()
self._hidden_size = hidden_size
self._recurrent = recurrent
if recurrent:
self.gru = nn.GRU(recurrent_input_size, hidden_size)
for name, param in self.gru.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0)
elif 'weight' in name:
nn.init.orthogonal_(param)