def make_env()

in gala/envs.py [0:0]


def make_env(env_id, seed, rank, log_dir, allow_early_resets, signature='',
             max_steps=None):
    def _thunk():
        if env_id.startswith("dm"):
            _, domain, task = env_id.split('.')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)

        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id, max_steps)

        env.seed(seed + rank)

        obs_shape = env.observation_space.shape

        if str(env.__class__.__name__).find('TimeLimit') >= 0:
            env = TimeLimitMask(env)

        if log_dir is not None:
            env = bench.Monitor(
                env,
                os.path.join(log_dir, str(rank) + signature),
                allow_early_resets=allow_early_resets)

        if is_atari:
            if len(env.observation_space.shape) == 3:
                env = wrap_deepmind(env)
        elif len(env.observation_space.shape) == 3:
            raise NotImplementedError(
                "CNN models work only for atari,\n"
                "please use a custom wrapper for a custom pixel input env.\n"
                "See wrap_deepmind for an example.")

        # If the input has shape (W,H,3), wrap for PyTorch convolutions
        obs_shape = env.observation_space.shape
        if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
            env = TransposeImage(env, op=[2, 0, 1])

        return env

    return _thunk