in models_all.py [0:0]
def __init__(
self,
dlatent_size=512, # Disentangled latent (W) dimensionality.
num_channels=3, # Number of output color channels.
resolution=1024, # Output resolution.
fmap_base=8192, # Overall multiplier for the number of feature maps.
fmap_decay=1.0, # log2 feature map reduction when doubling the resolution.
fmap_max=512, # Maximum number of feature maps in any layer.
use_styles=True, # Enable style inputs?
const_input_layer=True, # First layer is a learned constant?
use_noise=True, # Enable noise inputs?
randomize_noise=True, # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables. # noqa
nonlinearity="lrelu", # Activation function: 'relu', 'lrelu'
use_wscale=True, # Enable equalized learning rate?
use_pixel_norm=False, # Enable pixelwise feature vector normalization?
use_instance_norm=True, # Enable instance normalization?
dtype=torch.float32, # Data type to use for activations and outputs.
blur_filter=None, # Low-pass filter to apply when resampling activations. None = no filtering. # noqa
use_random_initial_noise=True, # Whether to use randomized initial noise in noise layer