in models_all.py [0:0]
def forward(self, x, noise=None):
if noise is None and self.noise is None:
if self.use_random_initial_noise:
noise = torch.randn(
x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype
)
else:
noise = torch.zeros(
x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype
)
# set noise to initial noise values without generating random noise
# at every inference step.
if self.randomize_noise is False:
self.noise = noise
elif noise is None:
# here is a little trick: if you get all the noiselayers and set each
# modules .noise attribute, you can have pre-defined noise.
# Very useful for analysis
noise = self.noise
x = x + self.weight.view(1, -1, 1, 1) * noise
return x