def _create_dataloader()

in per_class_augmentation/data.py [0:0]


    def _create_dataloader(self, stage: str, augmentations: transform_lib.Compose):
        path = os.path.join(self.data_dir, stage)

        if stage == "train":
            shuffle = True
            dataset = TopAugmentationsDataset(
                path,
                transform_dir=self.top_transforms_dir,
                num_transforms=self.num_transforms,
                similarity_type=self.similarity_type,
                plus_standard_aug=self.plus_standard_aug,
                standard_aug_before=self.standard_aug_before,
                top_per_class=self.top_per_class,
                top_transform_ranking=self.top_transform_ranking,
                transform_prob=self.transform_prob,
                min_prop_boosted_filter=self.min_prop_boosted_filter,
                min_perc_change_per_class_filter=self.min_perc_change_per_class_filter,
            )
        else:
            shuffle = False
            dataset = torchvision.datasets.ImageFolder(path, augmentations)

        data_loader = DataLoader(
            dataset,
            batch_size=self.batch_size,
            pin_memory=True,
            num_workers=self.num_workers,
            shuffle=shuffle,
        )
        return data_loader