in data_augmentation/my_training.py [0:0]
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter("Time", ":6.3f")
losses = AverageMeter("Loss", ":.4e")
top1 = AverageMeter("Acc@1", ":6.4f")
top5 = AverageMeter("Acc@5", ":6.4f")
progress = ProgressMeter(
len(val_loader), [batch_time, losses, top1, top5], prefix="Test: "
)
# switch to evaluate mode
model.eval()
if args.augerino and args.disable_at_valid:
if isinstance(model, nn.parallel.DistributedDataParallel):
model.module.disabled = True
elif isinstance(model, AugAveragedModel):
model.disabled = True
print("Disabling Augerino")
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if torch.cuda.is_available():
images = images.cuda()
target = target.cuda(non_blocking=True)
# compute output
if args.augerino and args.inv_per_class:
output = model(images, target)
else:
output = model(images)
if args.augerino:
loss = criterion(output, target, model, args, reg=args.aug_reg)
else:
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = acc1 / float(images.size(0)) * 100.0
acc5 = acc5 / float(images.size(0)) * 100.0
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(
" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}".format(top1=top1, top5=top5)
)
if args.augerino and args.disable_at_valid:
if isinstance(model, nn.parallel.DistributedDataParallel):
model.module.disabled = False
elif isinstance(model, AugAveragedModel):
model.disabled = False
return top1.avg.item(), top5.avg.item(), losses.avg