in per_class_augmentation/augmentations.py [0:0]
def compute_probabilities(self, df: pd.DataFrame):
num_transforms = len(df)
if self.transform_prob["dist"] == "fixed":
val = self.transform_prob["fixed_prob"]
probabilities = uniform_dist(val=val, size=num_transforms)
elif self.transform_prob["dist"] == "uniform":
probabilities = uniform_dist(size=num_transforms)
elif self.transform_prob["dist"] == "weighted_boost":
if len(df) == 1:
probabilities = [0.5]
else:
probabilities = softmax(df["weighted_boost"].values)
else:
raise NotImplementedError(f"{self.transform_prob=} not supported")
return probabilities