in data_augmentation/my_training.py [0:0]
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter("Time", ":6.3f")
data_time = AverageMeter("Data", ":6.3f")
losses = AverageMeter("Loss", ":.4e")
top1 = AverageMeter("Acc@1", ":6.4f")
top5 = AverageMeter("Acc@5", ":6.4f")
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch),
)
# switch to train mode
model.train()
end = time.time()
epoch_start = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if torch.cuda.is_available():
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
if args.augerino and args.inv_per_class:
output = model(images, target)
else:
output = model(images)
if args.augerino:
loss = criterion(output, target, model, args, reg=args.aug_reg)
else:
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
n_points = torch.FloatTensor([images.size(0)])
if torch.cuda.is_available():
n_points = n_points.cuda(non_blocking=True)
if args.distributed:
torch.distributed.all_reduce(acc1)
torch.distributed.all_reduce(acc5)
torch.distributed.all_reduce(n_points)
acc1 = acc1 / n_points * 100.0
acc5 = acc5 / n_points * 100.0
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], n_points.item())
top5.update(acc5[0], n_points.item())
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
epoch_end = time.time()
print("time 1 epoch {:.3f}".format(epoch_end - epoch_start))