def __init__()

in models.py [0:0]


    def __init__(self, in_channels, img_depth, kernel_size, dropout):
        super(TDSBlock2d, self).__init__()
        self.in_channels = in_channels
        self.img_depth = img_depth
        fc_size = in_channels * img_depth
        self.conv = torch.nn.Sequential(
            torch.nn.Conv3d(
                in_channels=in_channels,
                out_channels=in_channels,
                kernel_size=(1, kernel_size[0], kernel_size[1]),
                padding=(0, kernel_size[0] // 2, kernel_size[1] // 2),
            ),
            torch.nn.ReLU(),
            torch.nn.Dropout(dropout),
        )
        self.fc = torch.nn.Sequential(
            torch.nn.Linear(fc_size, fc_size),
            torch.nn.ReLU(),
            torch.nn.Dropout(dropout),
            torch.nn.Linear(fc_size, fc_size),
            torch.nn.Dropout(dropout),
        )
        self.instance_norms = torch.nn.ModuleList(
            [
                torch.nn.InstanceNorm2d(fc_size, affine=True),
                torch.nn.InstanceNorm2d(fc_size, affine=True),
            ]
        )