def __init__()

in habitat_baselines/agents/ppo_agents.py [0:0]


    def __init__(self, config: Config) -> None:
        spaces = {
            get_default_config().GOAL_SENSOR_UUID: Box(
                low=np.finfo(np.float32).min,
                high=np.finfo(np.float32).max,
                shape=(2,),
                dtype=np.float32,
            )
        }

        if config.INPUT_TYPE in ["depth", "rgbd"]:
            spaces["depth"] = Box(
                low=0,
                high=1,
                shape=(config.RESOLUTION, config.RESOLUTION, 1),
                dtype=np.float32,
            )

        if config.INPUT_TYPE in ["rgb", "rgbd"]:
            spaces["rgb"] = Box(
                low=0,
                high=255,
                shape=(config.RESOLUTION, config.RESOLUTION, 3),
                dtype=np.uint8,
            )
        observation_spaces = SpaceDict(spaces)

        action_spaces = Discrete(4)

        self.device = (
            torch.device("cuda:{}".format(config.PTH_GPU_ID))
            if torch.cuda.is_available()
            else torch.device("cpu")
        )
        self.hidden_size = config.HIDDEN_SIZE

        random.seed(config.RANDOM_SEED)
        torch.random.manual_seed(config.RANDOM_SEED)
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True  # type: ignore

        self.actor_critic = PointNavResNetPolicy(
            observation_space=observation_spaces,
            action_space=action_spaces,
            hidden_size=self.hidden_size,
            normalize_visual_inputs="rgb" in spaces,
        )
        self.actor_critic.to(self.device)

        if config.MODEL_PATH:
            ckpt = torch.load(config.MODEL_PATH, map_location=self.device)
            #  Filter only actor_critic weights
            self.actor_critic.load_state_dict(
                {  # type: ignore
                    k[len("actor_critic.") :]: v
                    for k, v in ckpt["state_dict"].items()
                    if "actor_critic" in k
                }
            )

        else:
            habitat.logger.error(
                "Model checkpoint wasn't loaded, evaluating " "a random model."
            )

        self.test_recurrent_hidden_states: Optional[torch.Tensor] = None
        self.not_done_masks: Optional[torch.Tensor] = None
        self.prev_actions: Optional[torch.Tensor] = None