def _setup_actor_critic_agent()

in habitat_baselines/rl/ppo/ppo_trainer.py [0:0]


    def _setup_actor_critic_agent(self, ppo_cfg: Config) -> None:
        r"""Sets up actor critic and agent for PPO.

        Args:
            ppo_cfg: config node with relevant params

        Returns:
            None
        """
        logger.add_filehandler(self.config.LOG_FILE)

        policy = baseline_registry.get_policy(self.config.RL.POLICY.name)
        observation_space = self.obs_space
        self.obs_transforms = get_active_obs_transforms(self.config)
        observation_space = apply_obs_transforms_obs_space(
            observation_space, self.obs_transforms
        )

        self.actor_critic = policy.from_config(
            self.config, observation_space, self.policy_action_space
        )
        self.obs_space = observation_space
        self.actor_critic.to(self.device)

        if (
            self.config.RL.DDPPO.pretrained_encoder
            or self.config.RL.DDPPO.pretrained
        ):
            pretrained_state = torch.load(
                self.config.RL.DDPPO.pretrained_weights, map_location="cpu"
            )

        if self.config.RL.DDPPO.pretrained:
            self.actor_critic.load_state_dict(
                {  # type: ignore
                    k[len("actor_critic.") :]: v
                    for k, v in pretrained_state["state_dict"].items()
                }
            )
        elif self.config.RL.DDPPO.pretrained_encoder:
            prefix = "actor_critic.net.visual_encoder."
            self.actor_critic.net.visual_encoder.load_state_dict(
                {
                    k[len(prefix) :]: v
                    for k, v in pretrained_state["state_dict"].items()
                    if k.startswith(prefix)
                }
            )

        if not self.config.RL.DDPPO.train_encoder:
            self._static_encoder = True
            for param in self.actor_critic.net.visual_encoder.parameters():
                param.requires_grad_(False)

        if self.config.RL.DDPPO.reset_critic:
            nn.init.orthogonal_(self.actor_critic.critic.fc.weight)
            nn.init.constant_(self.actor_critic.critic.fc.bias, 0)

        self.agent = (DDPPO if self._is_distributed else PPO)(
            actor_critic=self.actor_critic,
            clip_param=ppo_cfg.clip_param,
            ppo_epoch=ppo_cfg.ppo_epoch,
            num_mini_batch=ppo_cfg.num_mini_batch,
            value_loss_coef=ppo_cfg.value_loss_coef,
            entropy_coef=ppo_cfg.entropy_coef,
            lr=ppo_cfg.lr,
            eps=ppo_cfg.eps,
            max_grad_norm=ppo_cfg.max_grad_norm,
            use_normalized_advantage=ppo_cfg.use_normalized_advantage,
        )