in hucc/agents/sac.py [0:0]
def _update(self):
def act_logp(obs):
dist = self._model.pi(obs)
action = dist.rsample()
log_prob = dist.log_prob(action).sum(dim=-1)
action = action * self._action_factor
return action, log_prob
for _ in range(self._num_updates):
batch = self._buffer.get_batch(self._bsz)
reward = batch['reward']
not_done = th.logical_not(batch['terminal'])
if self._obs_keys:
obs = {k: batch[f'obs_{k}'] for k in self._obs_keys}
obs_p = {k: batch[f'next_obs_{k}'] for k in self._obs_keys}
if self._flatten_obs:
obs = th_flatten(self._obs_space, obs)
obs_p = th_flatten(self._obs_space, obs_p)
else:
obs = batch['obs']
obs_p = batch['next_obs']
# Backup for Q-Function
with th.no_grad():
a_p, log_prob_p = act_logp(obs_p)
if self._flatten_obs:
q_in = th.cat([obs_p, a_p], dim=1)
else:
q_in = dict(action=a_p, **obs_p)
q_tgt = th.min(self._q_tgt(q_in), dim=-1).values
backup = reward + self._gamma * not_done * (
q_tgt - self._log_alpha.detach().exp() * log_prob_p
)
# Q-Function update
if self._flatten_obs:
q_in = th.cat([obs, batch['action']], dim=1)
else:
q_in = dict(action=batch['action'], **obs)
q = self._q(q_in)
q1 = q[:, 0]
q2 = q[:, 1]
q1_loss = F.mse_loss(q1, backup)
q2_loss = F.mse_loss(q2, backup)
q_loss = q1_loss + q2_loss
self._optim.q.zero_grad()
q_loss.backward()
if self._clip_grad_norm > 0.0:
nn.utils.clip_grad_norm_(
self._model.q.parameters(), self._clip_grad_norm
)
self._optim.q.step()
# Policy update
for param in self._model.q.parameters():
param.requires_grad_(False)
a, log_prob = act_logp(obs)
if self._flatten_obs:
q_in = th.cat([obs, a], dim=1)
else:
q_in = dict(action=a, **obs)
q = th.min(self._q(q_in), dim=-1).values
pi_loss = (self._log_alpha.detach().exp() * log_prob - q).mean()
self._optim.pi.zero_grad()
pi_loss.backward()
if self._clip_grad_norm > 0.0:
nn.utils.clip_grad_norm_(
self._model.pi.parameters(), self._clip_grad_norm
)
self._optim.pi.step()
for param in self._model.q.parameters():
param.requires_grad_(True)
# Optional temperature update
if self._optim_alpha:
# This is slight reording of the formulation in
# https://github.com/rail-berkeley/softlearning, mostly so we
# don't need to create temporary tensors. log_prob is the only
# non-scalar tensor, so we can compute its mean first.
alpha_loss = -(
self._log_alpha.exp()
* (log_prob.mean().cpu() + self._target_entropy).detach()
)
self._optim_alpha.zero_grad()
alpha_loss.backward()
self._optim_alpha.step()
# Update target network
with th.no_grad():
for tp, p in zip(
self._target.q.parameters(), self._model.q.parameters()
):
tp.data.lerp_(p.data, 1.0 - self._polyak)
# These are the stats for the last update
self.tbw_add_scalar('Loss/Policy', pi_loss.item())
self.tbw_add_scalar('Loss/QValue', q_loss.item())
self.tbw_add_scalar('Health/Entropy', -log_prob.mean())
if self._optim_alpha:
self.tbw_add_scalar('Health/Alpha', self._log_alpha.exp().item())
if self._n_updates % 100 == 1:
self.tbw.add_scalars(
'Health/GradNorms',
{
k: v.grad.norm().item()
for k, v in self._model.named_parameters()
if v.grad is not None
},
self.n_samples,
)
avg_cr = th.cat(self._cur_rewards).mean().item()
log.info(
f'Sample {self._n_samples}, up {self._n_updates*self._num_updates}, avg cur reward {avg_cr:+0.3f}, pi loss {pi_loss.item():+.03f}, q loss {q_loss.item():+.03f}, entropy {-log_prob.mean().item():+.03f}, alpha {self._log_alpha.exp().item():.03f}'
)