def _update_lo()

in hucc/agents/hiro.py [0:0]


    def _update_lo(self):
        model = self._model.lo
        target = self._target.lo
        optim = self._optim.lo

        def act_logp(obs):
            dist = model.pi(obs)
            action = dist.rsample()
            log_prob = dist.log_prob(action).sum(dim=-1)
            action = action * self._action_factor_lo
            return action, log_prob

        for _ in range(self._num_updates):
            batch = self._buffer.get_batch(self._bsz)
            reward = batch['reward_lo']
            obs = {k: batch[f'obs_{k}'] for k in self._obs_lo_keys}
            obs_p = {k: batch[f'next_obs_{k}'] for k in self._obs_lo_keys}
            for k, m in self._obs_lo_mask.items():
                m = m.to(obs[k])
                obs[k] = obs[k] * m
                obs_p[k] = obs_p[k] * m
                self._obs_lo_mask[k] = m
            obs['desired_goal'] = batch['action_hi']
            obs_p['desired_goal'] = batch['auto_next_action_hi']
            not_fell_over = th.logical_not(batch['fell_over'])

            # Backup for Q-Function
            with th.no_grad():
                a_p, log_prob_p = act_logp(obs_p)
                q_in = dict(action=a_p, **obs_p)
                q_tgt = th.min(target.q(q_in), dim=-1).values
                # Assume that low-level epsiodes don't end
                backup = reward + self._gamma * not_fell_over * (
                    q_tgt - self._log_alpha_lo.detach().exp() * log_prob_p
                )

            # Q-Function update
            q_in = dict(action=batch['action_lo'], **obs)
            q = model.q(q_in)
            q1 = q[:, 0]
            q2 = q[:, 1]
            q1_loss = F.mse_loss(q1, backup)
            q2_loss = F.mse_loss(q2, backup)
            q_loss = q1_loss + q2_loss
            optim.q.zero_grad()
            q_loss.backward()
            if self._clip_grad_norm > 0.0:
                nn.utils.clip_grad_norm_(
                    model.q.parameters(), self._clip_grad_norm
                )
            optim.q.step()

            # Policy update
            for param in model.q.parameters():
                param.requires_grad_(False)

            a, log_prob = act_logp(obs)
            q_in = dict(action=a, **obs)
            q = th.min(model.q(q_in), dim=-1).values
            pi_loss = (self._log_alpha_lo.detach().exp() * log_prob - q).mean()
            optim.pi.zero_grad()
            pi_loss.backward()
            if self._clip_grad_norm > 0.0:
                nn.utils.clip_grad_norm_(
                    model.pi.parameters(), self._clip_grad_norm
                )
            optim.pi.step()

            for param in model.q.parameters():
                param.requires_grad_(True)

            # Optional temperature update
            if self._optim_alpha_lo:
                alpha_loss = -(
                    self._log_alpha_lo.exp()
                    * (log_prob.mean().cpu() + self._target_entropy_lo).detach()
                )
                self._optim_alpha_lo.zero_grad()
                alpha_loss.backward()
                self._optim_alpha_lo.step()

            # Update target network
            with th.no_grad():
                for tp, p in zip(target.q.parameters(), model.q.parameters()):
                    tp.data.lerp_(p.data, 1.0 - self._polyak)

        # These are the stats for the last update
        self.tbw_add_scalar('LossLo/Policy', pi_loss.item())
        self.tbw_add_scalar('LossLo/QValue', q_loss.item())
        self.tbw_add_scalar('HealthLo/Entropy', -log_prob.mean())
        if self._optim_alpha_lo:
            self.tbw_add_scalar(
                'HealthLo/Alpha', self._log_alpha_lo.exp().item()
            )
        self.tbw.add_scalars(
            'HealthLo/GradNorms',
            {
                k: v.grad.norm().item()
                for k, v in self._model.named_parameters()
                if v.grad is not None
            },
            self.n_samples,
        )

        avg_cr = th.cat(self._cur_rewards_lo).mean().item()
        log.info(
            f'Sample {self._n_samples} lo: up {self._n_updates*self._num_updates}, avg cur reward {avg_cr:+0.3f}, pi loss {pi_loss.item():+.03f}, q loss {q_loss.item():+.03f}, entropy {-log_prob.mean().item():+.03f}, alpha {self._log_alpha_lo.exp().item():.03f}'
        )