in hucc/agents/sachrl.py [0:0]
def _update(self):
for p in self._model.parameters():
mdevice = p.device
break
def act_logp(obs):
dist = self._model.hi.pi(obs)
action = dist.rsample()
log_prob = dist.log_prob(action).sum(dim=-1)
return action, log_prob
for _ in range(self._num_updates):
batch = self._buffer.get_batch(
self._bsz,
device=mdevice,
)
reward = batch['reward']
not_done = batch['not_done']
obs = {k: batch[f'obs_{k}'] for k in self._obs_keys}
obs_p = {k: batch[f'next_obs_{k}'] for k in self._obs_keys}
# Backup for Q-Function
with th.no_grad():
a_p, log_prob_p = act_logp(obs_p)
q_in = dict(action=a_p, **obs_p)
q_tgt = th.min(self._target.hi.q(q_in), dim=-1).values
backup = reward + batch['gamma_exp'] * not_done * (
q_tgt - self._log_alpha.detach().exp() * log_prob_p
)
# Q-Function update
q_in = dict(action=batch['action'], **obs)
q = self._model.hi.q(q_in)
q1 = q[:, 0]
q2 = q[:, 1]
q1_loss = F.mse_loss(q1, backup, reduction='none')
q2_loss = F.mse_loss(q2, backup, reduction='none')
q_loss = q1_loss.mean() + q2_loss.mean()
self._optim.hi.q.zero_grad()
q_loss.backward()
if self._clip_grad_norm > 0.0:
nn.utils.clip_grad_norm_(
self._model.q.parameters(), self._clip_grad_norm
)
self._optim.hi.q.step()
# Policy update
for param in self._model.hi.q.parameters():
param.requires_grad_(False)
# No time input for policy, and Q-functions are queried as if step
# would be 0 (i.e. we would take an action)
obs['time'] = obs['time'] * 0
a, log_prob = act_logp(obs)
q_in = dict(action=a, **obs)
q = th.min(self._model.hi.q(q_in), dim=-1).values
pi_loss = (self._log_alpha.detach().exp() * log_prob - q).mean()
self._optim.hi.pi.zero_grad()
pi_loss.backward()
if self._clip_grad_norm > 0.0:
nn.utils.clip_grad_norm_(
self._model.pi.parameters(), self._clip_grad_norm
)
self._optim.hi.pi.step()
for param in self._model.hi.q.parameters():
param.requires_grad_(True)
# Optional temperature update
if self._optim_alpha:
alpha_loss = -(
self._log_alpha.exp()
* (log_prob.mean().cpu() + self._target_entropy).detach()
)
self._optim_alpha.zero_grad()
alpha_loss.backward()
self._optim_alpha.step()
# Update target network
with th.no_grad():
for tp, p in zip(
self._target.hi.q.parameters(),
self._model.hi.q.parameters(),
):
tp.data.lerp_(p.data, 1.0 - self._polyak)
# These are the stats for the last update
self.tbw_add_scalar('Loss/Policy', pi_loss.item())
self.tbw_add_scalar('Loss/QValue', q_loss.item())
self.tbw_add_scalar('Health/Entropy', -log_prob.mean())
if self._optim_alpha:
self.tbw_add_scalar('Health/Alpha', self._log_alpha.exp().item())
if self._n_updates % 100 == 1:
self.tbw.add_scalars(
'Health/GradNorms',
{
k: v.grad.norm().item()
for k, v in self._model.named_parameters()
if v.grad is not None
},
self.n_samples,
)
avg_cr = th.cat(self._cur_rewards).mean().item()
log.info(
f'Sample {self._n_samples}, up {self._n_updates*self._num_updates}, avg cur reward {avg_cr:+0.3f}, pi loss {pi_loss.item():+.03f}, q loss {q_loss.item():+.03f}, entropy {-log_prob.mean().item():+.03f}, alpha {self._log_alpha.exp().item():.03f}'
)