in hucc/agents/diayn.py [0:0]
def _update(self):
def act_logp(obs):
dist = self._model.pi(obs)
action = dist.rsample()
log_prob = dist.log_prob(action).sum(dim=-1)
action = action * self._action_factor
return action, log_prob
rewards = []
for _ in range(self._num_updates):
batch = self._buffer.get_batch(self._bsz)
# Ensure that action has a batch dimension
action = batch['action'].view(batch['obs'].shape[0], -1)
z = batch['z']
z_one_hot = F.one_hot(z, self._n_skills).float()
phi_obs = batch.get('phi_obs', batch['obs'])
if self._phi_obs_feats is not None:
phi_obs = phi_obs[:, self._phi_obs_feats]
not_done = th.logical_not(batch['terminal'])
# Compute pseudo-reward with discriminator
with th.no_grad():
reward = -F.cross_entropy(
self._model.phi(phi_obs), z, reduction='none'
)
# Subtract baseline
if self._add_p_z:
reward = reward - self._log_p_z
rewards.append(reward.mean().item())
# Backup for Q-Function
with th.no_grad():
obs_p = th.cat([batch['next_obs'], z_one_hot], dim=1)
a_p, log_prob_p = act_logp(obs_p)
q_in = th.cat([obs_p, a_p], dim=1)
q_tgt = th.min(self._target.q(q_in), dim=-1).values
backup = reward + self._gamma * not_done * (
q_tgt - self._log_alpha.detach().exp() * log_prob_p
)
# Q-Function update
obs = th.cat([batch['obs'], z_one_hot], dim=1)
q_in = th.cat([obs, action], dim=1)
q = self._model.q(q_in)
q1 = q[:, 0]
q2 = q[:, 1]
q1_loss = F.mse_loss(q1, backup)
q2_loss = F.mse_loss(q2, backup)
q_loss = q1_loss + q2_loss
self._optim.q.zero_grad()
q_loss.backward()
self._optim.q.step()
# Policy update
for param in self._model.q.parameters():
param.requires_grad_(False)
a, log_prob = act_logp(obs)
q_in = th.cat([obs, a], dim=1)
q = th.min(self._model.q(q_in), dim=-1).values
pi_loss = (self._log_alpha.detach().exp() * log_prob - q).mean()
self._optim.pi.zero_grad()
pi_loss.backward()
self._optim.pi.step()
for param in self._model.q.parameters():
param.requires_grad_(True)
# Optional temperature update
if self._optim_alpha:
# This is slight reording of the formulation in
# https://github.com/rail-berkeley/softlearning, mostly so we
# don't need to create temporary tensors. log_prob is the only
# non-scalar tensor, so we can compute its mean first.
alpha_loss = -(
self._log_alpha.exp()
* (log_prob.mean().cpu() + self._target_entropy).detach()
)
self._optim_alpha.zero_grad()
alpha_loss.backward()
self._optim_alpha.step()
# Update discriminator
self._optim.phi.zero_grad()
phi_loss = F.cross_entropy(self._model.phi(phi_obs), z)
phi_loss.backward()
self._optim.phi.step()
# Update target network
with th.no_grad():
for tp, p in zip(
self._target.q.parameters(), self._model.q.parameters()
):
tp.data.lerp_(p.data, 1.0 - self._polyak)
self.tbw_add_scalar('Loss/Policy', pi_loss.item())
self.tbw_add_scalar('Loss/QValue', q_loss.item())
self.tbw_add_scalar('Loss/Discriminator', phi_loss.item())
self.tbw_add_scalar('Avg Reward', np.mean(rewards))
self.tbw_add_scalar('Health/Entropy', log_prob.mean().item())
if self._optim_alpha:
self.tbw_add_scalar('Health/Alpha', self._log_alpha.exp().item())
msg = log.debug
if (self._n_updates * self._num_updates) % 50 == 0:
msg = log.info
msg(
f'Sample {self._n_samples}, up {self._n_updates*self._num_updates}, pi loss {pi_loss.item():+.03f}, q loss {q_loss.item():+.03f}, phi loss {phi_loss.item():+.03f}, avg reward {np.mean(rewards):+.03}, alpha {self._log_alpha.exp().item():.03f}'
)