def _update()

in hucc/agents/sachrl.py [0:0]


    def _update(self):
        for p in self._model.parameters():
            mdevice = p.device
            break

        def act_logp(obs):
            dist = self._model.hi.pi(obs)
            action = dist.rsample()
            log_prob = dist.log_prob(action).sum(dim=-1)
            return action, log_prob

        for _ in range(self._num_updates):
            batch = self._buffer.get_batch(
                self._bsz,
                device=mdevice,
            )

            reward = batch['reward']
            not_done = batch['not_done']
            obs = {k: batch[f'obs_{k}'] for k in self._obs_keys}
            obs_p = {k: batch[f'next_obs_{k}'] for k in self._obs_keys}

            # Backup for Q-Function
            with th.no_grad():
                a_p, log_prob_p = act_logp(obs_p)
                q_in = dict(action=a_p, **obs_p)
                q_tgt = th.min(self._target.hi.q(q_in), dim=-1).values
                backup = reward + batch['gamma_exp'] * not_done * (
                    q_tgt - self._log_alpha.detach().exp() * log_prob_p
                )

            # Q-Function update
            q_in = dict(action=batch['action'], **obs)
            q = self._model.hi.q(q_in)
            q1 = q[:, 0]
            q2 = q[:, 1]
            q1_loss = F.mse_loss(q1, backup, reduction='none')
            q2_loss = F.mse_loss(q2, backup, reduction='none')
            q_loss = q1_loss.mean() + q2_loss.mean()
            self._optim.hi.q.zero_grad()
            q_loss.backward()
            if self._clip_grad_norm > 0.0:
                nn.utils.clip_grad_norm_(
                    self._model.q.parameters(), self._clip_grad_norm
                )
            self._optim.hi.q.step()

            # Policy update
            for param in self._model.hi.q.parameters():
                param.requires_grad_(False)

            # No time input for policy, and Q-functions are queried as if step
            # would be 0 (i.e. we would take an action)
            obs['time'] = obs['time'] * 0
            a, log_prob = act_logp(obs)
            q_in = dict(action=a, **obs)
            q = th.min(self._model.hi.q(q_in), dim=-1).values
            pi_loss = (self._log_alpha.detach().exp() * log_prob - q).mean()
            self._optim.hi.pi.zero_grad()
            pi_loss.backward()
            if self._clip_grad_norm > 0.0:
                nn.utils.clip_grad_norm_(
                    self._model.pi.parameters(), self._clip_grad_norm
                )
            self._optim.hi.pi.step()

            for param in self._model.hi.q.parameters():
                param.requires_grad_(True)

            # Optional temperature update
            if self._optim_alpha:
                alpha_loss = -(
                    self._log_alpha.exp()
                    * (log_prob.mean().cpu() + self._target_entropy).detach()
                )
                self._optim_alpha.zero_grad()
                alpha_loss.backward()
                self._optim_alpha.step()

            # Update target network
            with th.no_grad():
                for tp, p in zip(
                    self._target.hi.q.parameters(),
                    self._model.hi.q.parameters(),
                ):
                    tp.data.lerp_(p.data, 1.0 - self._polyak)

        # These are the stats for the last update
        self.tbw_add_scalar('Loss/Policy', pi_loss.item())
        self.tbw_add_scalar('Loss/QValue', q_loss.item())
        self.tbw_add_scalar('Health/Entropy', -log_prob.mean())
        if self._optim_alpha:
            self.tbw_add_scalar('Health/Alpha', self._log_alpha.exp().item())
        if self._n_updates % 100 == 1:
            self.tbw.add_scalars(
                'Health/GradNorms',
                {
                    k: v.grad.norm().item()
                    for k, v in self._model.named_parameters()
                    if v.grad is not None
                },
                self.n_samples,
            )

        avg_cr = th.cat(self._cur_rewards).mean().item()
        log.info(
            f'Sample {self._n_samples}, up {self._n_updates*self._num_updates}, avg cur reward {avg_cr:+0.3f}, pi loss {pi_loss.item():+.03f}, q loss {q_loss.item():+.03f}, entropy {-log_prob.mean().item():+.03f}, alpha {self._log_alpha.exp().item():.03f}'
        )