in main.py [0:0]
def main():
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument("cmd", help="Baseline to run")
parser.add_argument("--dset", help="Corpus of hearst patterns.")
parser.add_argument("--k", default=None, type=int, help="Number of dimensions.")
args = parser.parse_args()
if args.cmd in {"svdppmi", "svdcnt", "random", "slqs", "slqscos"} and not args.k:
raise parser.error("You must specify --k")
if args.cmd == "cnt":
model = pattern.RawCountModel(args.dset)
elif args.cmd == "ppmi":
model = pattern.PPMIModel(args.dset)
elif args.cmd == "svdppmi":
model = pattern.SvdPpmiModel(args.dset, k=args.k)
elif args.cmd == "svdcnt":
model = pattern.SvdRawModel(args.dset, k=args.k)
elif args.cmd == "random":
model = base.RandomBaseline(args.dset, k=args.k)
elif args.cmd == "weeds":
model = unsup.UnsupervisedBaseline(args.dset, unsup.weeds_prec)
elif args.cmd == "invcl":
model = unsup.UnsupervisedBaseline(args.dset, unsup.invCL)
elif args.cmd == "slqs":
model = unsup.SLQS(args.dset, args.k)
elif args.cmd == "slqscos":
model = unsup.SLQS_Cos(args.dset, args.k)
elif args.cmd == "cosine":
model = unsup.UnsupervisedBaseline(args.dset, unsup.cosine)
elif args.cmd == "precomputed":
model = unsup.Precomputed(args.dset)
else:
parser.print_help()
sys.exit(1)
result = evaluation.all_evaluations(model, args)
result["name"] = args.cmd
result["dset"] = args.dset
result["k"] = args.k
print(json.dumps(result))