data_utils/make_hdf5.py [27:54]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def prepare_parser():
    usage = "Parser for ImageNet HDF5 scripts."
    parser = ArgumentParser(description=usage)
    parser.add_argument(
        "--resolution",
        type=int,
        default=128,
        help="Which Dataset resolution to train on, out of 64, 128, 256 (default: %(default)s)",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="train",
        help="Which Dataset to convert: train, val (default: %(default)s)",
    )
    parser.add_argument(
        "--data_root",
        type=str,
        default="data",
        help="Default location where data is stored (default: %(default)s)",
    )
    parser.add_argument(
        "--out_path",
        type=str,
        default="data",
        help="Default location where data in hdf5 format will be stored (default: %(default)s)",
    )
    parser.add_argument(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



data_utils/make_hdf5_nns.py [23:50]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def prepare_parser():
    usage = "Parser for ImageNet HDF5 scripts."
    parser = ArgumentParser(description=usage)
    parser.add_argument(
        "--resolution",
        type=int,
        default=128,
        help="Which Dataset resolution to train on, out of 64, 128, 256 (default: %(default)s)",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="train",
        help="Which Dataset to convert: train, val (default: %(default)s)",
    )
    parser.add_argument(
        "--data_root",
        type=str,
        default="data",
        help="Default location where data is stored (default: %(default)s)",
    )
    parser.add_argument(
        "--out_path",
        type=str,
        default="data",
        help="Default location where data in hdf5 format will be stored (default: %(default)s)",
    )
    parser.add_argument(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



