in data_utils/make_hdf5.py [0:0]
def prepare_parser():
usage = "Parser for ImageNet HDF5 scripts."
parser = ArgumentParser(description=usage)
parser.add_argument(
"--resolution",
type=int,
default=128,
help="Which Dataset resolution to train on, out of 64, 128, 256 (default: %(default)s)",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Which Dataset to convert: train, val (default: %(default)s)",
)
parser.add_argument(
"--data_root",
type=str,
default="data",
help="Default location where data is stored (default: %(default)s)",
)
parser.add_argument(
"--out_path",
type=str,
default="data",
help="Default location where data in hdf5 format will be stored (default: %(default)s)",
)
parser.add_argument(
"--pretrained_model_path",
type=str,
default="",
help="Location where the pretrained model (to extract features) can be found (default: %(default)s)",
)
parser.add_argument(
"--save_features_only",
action="store_true",
default=False,
help="Only save features in hdf5 file.",
)
parser.add_argument(
"--save_images_only",
action="store_true",
default=False,
help="Only save images and their labels in hdf5 file.",
)
parser.add_argument(
"--feature_augmentation",
action="store_true",
default=False,
help="Additioally store instance features with horizontally flipped input images.",
)
parser.add_argument(
"--feature_extractor",
type=str,
default="classification",
choices=["classification", "selfsupervised"],
help="Choice of feature extractor",
)
parser.add_argument(
"--backbone_feature_extractor",
type=str,
default="resnet50",
choices=["resnet50"],
help="Choice of feature extractor backbone",
)
parser.add_argument(
"--which_dataset", type=str, default="imagenet", help="Dataset choice."
)
parser.add_argument(
"--instance_json",
type=str,
default="",
help="Path to JSON containing instance segmentations for COCO_Stuff",
)
parser.add_argument(
"--stuff_json",
type=str,
default="",
help="Path to JSON containing instance segmentations for COCO_Stuff",
)
parser.add_argument(
"--batch_size",
type=int,
default=256,
help="Default overall batchsize (default: %(default)s)",
)
parser.add_argument(
"--num_workers",
type=int,
default=16,
help="Number of dataloader workers (default: %(default)s)",
)
parser.add_argument(
"--chunk_size",
type=int,
default=500,
help="Default overall batchsize (default: %(default)s)",
)
parser.add_argument(
"--compression",
action="store_true",
default=False,
help="Use LZF compression? (default: %(default)s)",
)
return parser