def learn()

in src/algos/curiosity.py [0:0]


def learn(actor_model,
          model,
          state_embedding_model,
          forward_dynamics_model,
          inverse_dynamics_model,
          batch,
          initial_agent_state, 
          optimizer,
          state_embedding_optimizer, 
          forward_dynamics_optimizer, 
          inverse_dynamics_optimizer, 
          scheduler,
          flags,
          frames=None,
          lock=threading.Lock()):
    """Performs a learning (optimization) step."""
    with lock:
        if flags.use_fullobs_intrinsic:
            state_emb = state_embedding_model(batch, next_state=False)\
                    .reshape(flags.unroll_length, flags.batch_size, 128)
            next_state_emb = state_embedding_model(batch, next_state=True)\
                    .reshape(flags.unroll_length, flags.batch_size, 128)
        else:
            state_emb = state_embedding_model(batch['partial_obs'][:-1].to(device=flags.device))
            next_state_emb = state_embedding_model(batch['partial_obs'][1:].to(device=flags.device))

        pred_next_state_emb = forward_dynamics_model(\
            state_emb, batch['action'][1:].to(device=flags.device))
        pred_actions = inverse_dynamics_model(state_emb, next_state_emb) 
        entropy_emb_actions = losses.compute_entropy_loss(pred_actions)

        intrinsic_rewards = torch.norm(pred_next_state_emb - next_state_emb, dim=2, p=2)
        
        intrinsic_reward_coef = flags.intrinsic_reward_coef
        intrinsic_rewards *= intrinsic_reward_coef 
        
        forward_dynamics_loss = flags.forward_loss_coef * \
            losses.compute_forward_dynamics_loss(pred_next_state_emb, next_state_emb)

        inverse_dynamics_loss = flags.inverse_loss_coef * \
            losses.compute_inverse_dynamics_loss(pred_actions, batch['action'][1:])

        num_samples = flags.unroll_length * flags.batch_size
        actions_flat = batch['action'][1:].reshape(num_samples).cpu().detach().numpy()
        intrinsic_rewards_flat = intrinsic_rewards.reshape(num_samples).cpu().detach().numpy()

            
        learner_outputs, unused_state = model(batch, initial_agent_state)

        bootstrap_value = learner_outputs['baseline'][-1]

        batch = {key: tensor[1:] for key, tensor in batch.items()}
        learner_outputs = {
            key: tensor[:-1]
            for key, tensor in learner_outputs.items()
        }
        
        actions = batch['action'].reshape(flags.unroll_length * flags.batch_size).cpu().numpy()
        action_percentage = [0 for _ in range(model.num_actions)]
        for i in range(model.num_actions):
            action_percentage[i] = np.sum([a == i for a in actions]) / len(actions)
        
        rewards = batch['reward']
            
        if flags.no_reward:
            total_rewards = intrinsic_rewards
        else:            
            total_rewards = rewards + intrinsic_rewards
        clipped_rewards = torch.clamp(total_rewards, -1, 1)
        
        discounts = (~batch['done']).float() * flags.discounting

        vtrace_returns = vtrace.from_logits(
            behavior_policy_logits=batch['policy_logits'],
            target_policy_logits=learner_outputs['policy_logits'],
            actions=batch['action'],
            discounts=discounts,
            rewards=clipped_rewards,
            values=learner_outputs['baseline'],
            bootstrap_value=bootstrap_value)

        pg_loss = losses.compute_policy_gradient_loss(learner_outputs['policy_logits'],
                                               batch['action'],
                                               vtrace_returns.pg_advantages)
        baseline_loss = flags.baseline_cost * losses.compute_baseline_loss(
            vtrace_returns.vs - learner_outputs['baseline'])
        entropy_loss = flags.entropy_cost * losses.compute_entropy_loss(
            learner_outputs['policy_logits'])

        total_loss = pg_loss + baseline_loss + entropy_loss \
                + forward_dynamics_loss  + inverse_dynamics_loss
        
        episode_returns = batch['episode_return'][batch['done']]
        episode_lengths = batch['episode_step'][batch['done']]
        episode_wins = batch['episode_win'][batch['done']]
        stats = {
            'mean_episode_return': torch.mean(episode_returns).item(),
            'total_loss': total_loss.item(),
            'pg_loss': pg_loss.item(),
            'baseline_loss': baseline_loss.item(),
            'entropy_loss': entropy_loss.item(),
            'forward_dynamics_loss': forward_dynamics_loss.item(),
            'inverse_dynamics_loss': inverse_dynamics_loss.item(),
            'mean_rewards': torch.mean(rewards).item(),
            'mean_intrinsic_rewards': torch.mean(intrinsic_rewards).item(),
            'mean_total_rewards': torch.mean(total_rewards).item(),
        }
        
        scheduler.step()
        optimizer.zero_grad()
        state_embedding_optimizer.zero_grad()
        forward_dynamics_optimizer.zero_grad()
        inverse_dynamics_optimizer.zero_grad()
        total_loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), flags.max_grad_norm)
        nn.utils.clip_grad_norm_(state_embedding_model.parameters(), flags.max_grad_norm)
        nn.utils.clip_grad_norm_(forward_dynamics_model.parameters(), flags.max_grad_norm)
        nn.utils.clip_grad_norm_(inverse_dynamics_model.parameters(), flags.max_grad_norm)
        optimizer.step()
        state_embedding_optimizer.step()
        forward_dynamics_optimizer.step()
        inverse_dynamics_optimizer.step()

        actor_model.load_state_dict(model.state_dict())
        return stats