in main.py [0:0]
def parse_args():
"""Returns a configuration from command line arguments."""
# Main options
parser = argparse.ArgumentParser()
parser.add_argument('--out_dir', required=True, type=str,
help='Output directory')
parser.add_argument('--exp_name', default=None, type=str,
help='Name for the experiment output folder')
parser.add_argument('--dataset', required=True, type=str,
help='Dataset to use')
# Model options
parser.add_argument('--model', required=True, type=str,
help='Type of Encoder/Decoder to use')
parser.add_argument('--rec_loss', default='l1', type=str,
choices=['l1', 'l2', 'bce'],
help='Reconstruction loss to use')
parser.add_argument('--checkpoint', default=None, type=str,
help='Resume training with this checkpoint path')
# Hyperparameters
parser.add_argument('--n_ctx', required=True, type=int,
help='Number of context frames to use')
parser.add_argument('--n_steps', required=True, type=int,
help='Number of steps to unroll the model for')
parser.add_argument('--lr', default=1e-4, type=float,
help='Learning rate for the optimizer')
parser.add_argument('--n_z', default=10, type=int,
help='Number of latents to use.')
parser.add_argument('--beta', default=1, type=float,
help='Weight for the KL loss in the VAE objective')
parser.add_argument('--beta_wu', default=0, type=int,
help='Use a warm-up schedule for the beta parameter')
# Experiment options
parser.add_argument('--batch_size', default=16, type=int,
help='Number of examples per batch')
parser.add_argument('--log_freq', default=100, type=int,
help='Display information every X batches')
parser.add_argument('--sample_freq', default=1, type=int,
help='Log samples every X epochs')
parser.add_argument('--save_freq', default=1, type=int,
help='Save model every X epochs')
parser.add_argument('--n_workers', default=4, type=int,
help='Number of data loading threads')
parser.add_argument('--gpu', default=1, type=int,
help='Use GPU')
parser.add_argument('--max_epochs', default=500, type=int,
help='Maximum number of epochs')
parser.add_argument('--test_batches', default=10, type=int,
help='Number of batches to test the model for.')
# Distributed options and float16 options
parser.add_argument('--apex', action='store_true', default=False,
help='Use APEX (float16)')
parser.add_argument('--multigpu', default=0, type=int,
help='Use multi GPU training')
parser.add_argument('--dist-url', default=None, type=str,
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
args = parser.parse_args()
return vars(args)