def posterior()

in models/vrnn_hier.py [0:0]


    def posterior(self, emb, use_mean=False, scale_var=1.):
        dists = []

        for net_idx in range(len(self.posterior_nets)):

            # print('[NET] PosteriorNet {}'.format(net_idx))

            # Find the corresopnding activations
            ctx_idx = self.arch['latent']['ctx_idx'][net_idx]
            out = emb[ctx_idx][:, self.n_ctx:].contiguous()
            cur_ctx = emb[ctx_idx][:, :self.n_ctx].contiguous()
            branch_layers = self.posterior_nets[net_idx]

            # print('CTX IDX: ', ctx_idx, ' shape: ', cur_ctx.shape)
            # print(branch_layers)

            # Process the current branch
            for branch_layer_idx, layer in enumerate(branch_layers):

                # print('[NET] PosteriorNet {}/{}'.format(net_idx, branch_layer_idx))

                if isinstance(layer, ConvLSTM):

                    # Get initial condition
                    cur_ctx = cur_ctx.view(
                        cur_ctx.shape[0], 
                        -1, 
                        cur_ctx.shape[-2], 
                        cur_ctx.shape[-1]
                    )
                    cur_ctx = cur_ctx.unsqueeze(1)
                    cur_ctx = self.posterior_init_nets[net_idx](cur_ctx)
                    cur_ctx = cur_ctx.squeeze(1)

                    # Forward LSTM
                    out = layer(out, torch.chunk(cur_ctx, 2, 1))

                # Dense connectivity latent
                elif branch_layer_idx == 3:

                    # print('THIRD LAYER')

                    # Get current latent resolution
                    cur_res = self.arch['latent']['resolution'][net_idx]

                    # Accumulate previous z
                    prev_zs = []

                    for prev_z_idx in range(net_idx):

                        # Get previous z resolution
                        prev_res = self.arch['latent']['resolution'][prev_z_idx]

                        # Compute scaling factor
                        scaling_factor = cur_res//prev_res

                        # Interpolate previous z
                        z_prev = dists[prev_z_idx][-2]
                        b, t, c, h, w = z_prev.shape
                        z_prev = z_prev.view(b*t, c, h, w)
                        z_prev = F.interpolate(z_prev, scale_factor=scaling_factor)
                        z_prev = z_prev.view(b, t, c, z_prev.shape[-2], z_prev.shape[-1])
                        prev_zs.append(z_prev)

                    # Concatenate zs
                    prev_zs = torch.cat(prev_zs + [out], 2)
                    
                    # Forward through layer
                    out = layer(prev_zs)

                else:
                    out = layer(out)

            # Compute distribution stats
            mean, var = torch.chunk(out, 2, 2)

            # Scale the variance
            var = var*scale_var

            # Softplus var
            logvar = F.softplus(var).log()

            # Generate sample from this distribution
            z0 = flows.gaussian_rsample(mean, logvar, use_mean=use_mean)

            dists.append([mean, logvar, z0, z0, None])

        return dists