in models/s2s_convlstm_baseline.py [0:0]
def __init__(self, img_ch, n_ctx,
n_hid=64,
n_z=10,
enc_dim=512,
share_prior_enc=False,
reverse_post=False,
):
super().__init__()
self.n_ctx = n_ctx
self.enc_dim = enc_dim
self.sto_emb_net = nn.ModuleList([
layers.DcConv(img_ch, n_hid, 4, 2, 1),
layers.DcConv(n_hid, n_hid*2, 4, 2, 1),
layers.DcConv(n_hid*2, n_hid*4, 4, 2, 1),
layers.DcConv(n_hid*4, n_hid*8, 4, 2, 1),
layers.DcConv(n_hid*8, enc_dim, 4, 1, 0, norm=partial(nn.GroupNorm, 1)),
])
self.det_emb_net = nn.ModuleList([
layers.DcConv(img_ch, n_hid, 4, 2, 1),
layers.DcConv(n_hid, n_hid*2, 4, 2, 1),
layers.DcConv(n_hid*2, n_hid*4, 4, 2, 1),
layers.DcConv(n_hid*4, n_hid*8, 4, 2, 1),
layers.DcConv(n_hid*8, enc_dim, 4, 1, 0, norm=partial(nn.GroupNorm, 1)),
])
mult = 1
self.render_net = nn.ModuleList([
layers.ConvLSTM(enc_dim + n_z, enc_dim),
layers.DcUpConv(enc_dim, n_hid*8, 4, 1, 0),
layers.ConvLSTM(n_hid*8, n_hid*8),
layers.DcUpConv(n_hid*8*mult, n_hid*4, 4, 2, 1),
layers.ConvLSTM(n_hid*4, n_hid*4),
layers.DcUpConv(n_hid*4*mult, n_hid*2, 4, 2, 1),
layers.ConvLSTM(n_hid*2, n_hid*2),
layers.DcUpConv(n_hid*2*mult, n_hid, 4, 2, 1),
layers.ConvLSTM(n_hid, n_hid),
layers.DcUpConv(n_hid*mult, n_hid, 4, 2, 1),
layers.TemporalConv2d(n_hid*1, img_ch, 3, 1, 1),
])
self.det_init_net = nn.Sequential(
layers.DcConv(2*enc_dim*self.n_ctx, 2*enc_dim*self.n_ctx, 1),
layers.TemporalConv2d(2*enc_dim*self.n_ctx, 2*enc_dim, 1),
layers.TemporalNorm2d(1, 2*enc_dim),
)
self.prior_init_nets = nn.ModuleDict({
'layer_4': nn.Sequential(
layers.DcConv(enc_dim*self.n_ctx, enc_dim*self.n_ctx, 1),
layers.TemporalConv2d(enc_dim*self.n_ctx, enc_dim*2, 1),
layers.TemporalNorm2d(1, 2*enc_dim),
),
})
self.posterior_init_nets = nn.ModuleDict({
'layer_4': nn.Sequential(
layers.DcConv(enc_dim*self.n_ctx, enc_dim*self.n_ctx, 1),
layers.TemporalConv2d(enc_dim*self.n_ctx, enc_dim*2, 1),
layers.TemporalNorm2d(1, 2*enc_dim),
),
})
self.posterior_branches = nn.ModuleDict({
'layer_4': nn.ModuleList([
layers.TemporalConv2d(enc_dim, n_z, 1),
layers.TemporalNorm2d(1, n_z),
layers.ConvLSTM(n_z, enc_dim, norm=True),
layers.TemporalConv2d(enc_dim, n_z*2, 1),
])
})
self.prior_branches = nn.ModuleDict({
'layer_4': nn.ModuleList([
layers.TemporalConv2d(enc_dim, n_z, 1),
layers.TemporalNorm2d(1, n_z),
layers.ConvLSTM(n_z, enc_dim, norm=True),
layers.TemporalConv2d(enc_dim, n_z*2, 1),
])
})
# Connection list
self.det_init_connections = {
0: 4,
2: 3,
4: 2,
6: 1,
8: 0,
}
# Connection branches
self.det_init_nets = nn.ModuleDict({
'layer_4': nn.Sequential(
layers.DcConv(enc_dim*self.n_ctx, enc_dim*self.n_ctx, 1),
layers.TemporalConv2d(enc_dim*self.n_ctx, enc_dim*2, 1),
layers.TemporalNorm2d(1, enc_dim*2)
),
'layer_3': nn.Sequential(
layers.DcConv(n_hid*8*self.n_ctx, n_hid*8*self.n_ctx, 1),
layers.TemporalConv2d(n_hid*8*self.n_ctx, n_hid*8*2, 1),
layers.TemporalNorm2d(16, n_hid*8*2)
),
'layer_2': nn.Sequential(
layers.DcConv(n_hid*4*self.n_ctx, n_hid*4*self.n_ctx, 1),
layers.TemporalConv2d(n_hid*4*self.n_ctx, n_hid*4*2, 1),
layers.TemporalNorm2d(16, n_hid*8)
),
'layer_1': nn.Sequential(
layers.DcConv(n_hid*2*self.n_ctx, n_hid*2*self.n_ctx, 1),
layers.TemporalConv2d(n_hid*2*self.n_ctx, n_hid*2*2, 1),
layers.TemporalNorm2d(16, n_hid*4)
),
'layer_0': nn.Sequential(
layers.DcConv(n_hid*1*self.n_ctx, n_hid*1*self.n_ctx, 1),
layers.TemporalConv2d(n_hid*1*self.n_ctx, n_hid*1*2, 1),
layers.TemporalNorm2d(16, n_hid*2)
),
})
# Stochastic connection list
# encoder -> renderer
self.sto_branches = {
4: 0,
}
# renderer -> encoder
self.rend_sto_branches = {
0: 0,
}