def forward()

in models/vrnn_hier.py [0:0]


    def forward(self, frames, config, use_prior, use_mean=False, scale_var=1.):

        stored_vars = []
        n_steps = config['n_steps']
        n_ctx = config['n_ctx']

        # Encode frames for latents and renderer
        emb = self.get_emb(frames)

        # Get prior and posterior
        q_dists = self.posterior(emb, use_mean=use_mean, scale_var=scale_var)
        p_dists = self.prior(emb, q_dists, use_mean=use_mean, scale_var=scale_var)

        # Latent samples
        zs = []
        if use_prior:
            for (_, _, z0, _, _) in p_dists:
                zs.append(z0)
        else:
            for (_, _, _, zk, _) in q_dists:
                zs.append(zk)

        # Render frames
        preds = self.render(emb[-1][:, n_ctx - 1:-1], zs, emb)

        return (preds, p_dists, q_dists), stored_vars