def __init__()

in models/vrnn.py [0:0]


    def __init__(self, img_ch, n_ctx,
            n_hid=64, 
            n_z=10,
            enc_dim=512, 
            share_prior_enc=False, 
            reverse_post=False,
        ):
        super().__init__()

        self.n_ctx = n_ctx
        self.enc_dim = enc_dim

        # Get VRNN architecture
        self.arch = self.vrnn_arch(n_hid, n_z, enc_dim, img_ch)

        ### Define frame embedding network
        emb_net = []
        for i, _ in enumerate(self.arch['frame_emb']['in_ch']):
            arch = self.arch['frame_emb']
            inc = arch['in_ch'][i]
            outc = arch['out_ch'][i]
            pksize = arch['pool_ksize'][i]
            pstride = arch['pool_stride'][i]
            first_conv = arch['first_conv'][i]

            block = []

            if pksize is not None:
                block += [nn.MaxPool2d(pksize, pstride)]

            if first_conv:
                block += [nn.Conv2d(inc, outc, 1)]
            else:
                block += [ResnetBlock(inc, outc)]

            block += [ResnetBlock(outc, outc)]

            block = nn.Sequential(*block)
            emb_net += [block]

        self.emb_net = nn.ModuleList(emb_net)

        ### Define rendering network
        render_nets = []
        init_nets = []
        for i, _ in enumerate(self.arch['renderer']['in_ch']):
            arch = self.arch['renderer']
            inc = arch['in_ch'][i]
            hidc = arch['hid_ch'][i]
            outc = arch['out_ch'][i]
            ksize = arch['ksize'][i]
            padding = arch['padding'][i]
            stride = arch['stride'][i]
            upsample = arch['upsample'][i]
            init_inc = self.arch['frame_emb']['out_ch'][-(i + 1)]
            init_outc = hidc
            latent_idx = arch['latent_idx'][i]

            # Recompute ConvLSTM to have all the previous latents
            if latent_idx is not None:
                # import pdb; pdb.set_trace()
                # latent_ch = self.arch['latentl']['in_ch']
                latent_ch = self.arch['latent']['out_ch'][latent_idx]
                inc += latent_ch

            render_net = [ConvLSTM(inc, hidc, norm=True)]

            if upsample:
                render_net += [DcUpConv(hidc, outc, ksize, stride, padding)]
            else:
                render_net += [DcConv(hidc, outc, 3, 1, 1)]

            # Last layer of renderer
            if i == (len(arch['in_ch']) - 1):
                render_net += [TemporalConv2d(n_hid, img_ch, 3, 1, 1)]

            init_net = [
                DcConv(init_inc*self.n_ctx, init_inc*self.n_ctx, 1),
                TemporalConv2d(init_inc*self.n_ctx, init_outc*2, 1),
                TemporalNorm2d(1, init_outc*2),
            ]

            render_net = nn.ModuleList(render_net)
            render_nets.append(render_net)

            init_net = nn.Sequential(*init_net)
            init_nets.append(init_net)


        self.render_nets = nn.ModuleList(render_nets)
        self.init_nets = nn.ModuleList(init_nets)

        ### Define latent Net
        prior_init_nets = []
        posterior_init_nets = []
        prior_nets = []
        posterior_nets = []
        for i, _ in enumerate(self.arch['latent']['in_ch']):
            arch = self.arch['latent']
            inc = arch['in_ch'][i]
            hidc = arch['hid_ch'][i]
            outc = arch['out_ch'][i]

            # Compute previous channels
            prevc = sum(arch['out_ch'][:i])

            prior_net = []
            posterior_net = []
            prior_init_net = []
            posterior_init_net = []

            prior_net += [
                TemporalConv2d(inc, hidc, 1),
                TemporalNorm2d(1, hidc),
                ConvLSTM(hidc, hidc, norm=True),
                TemporalConv2d(hidc, outc*2, 1),
                TemporalNorm2d(1, outc*2),
            ]

            posterior_net += [
                TemporalConv2d(inc, hidc, 1),
                TemporalNorm2d(1, hidc),
                ConvLSTM(hidc, hidc, norm=True),
                TemporalConv2d(hidc + prevc, outc*2, 1),
                TemporalNorm2d(1, outc*2),
            ]

            prior_init_net += [
                DcConv(inc*self.n_ctx, inc*self.n_ctx, 1),
                TemporalConv2d(inc*self.n_ctx, hidc*2, 1),
                TemporalNorm2d(1, 2*hidc),

            ]

            posterior_init_net += [
                DcConv(inc*self.n_ctx, inc*self.n_ctx, 1),
                TemporalConv2d(inc*self.n_ctx, hidc*2, 1),
                TemporalNorm2d(1, 2*hidc),

            ]

            # Make modulelist
            prior_net = nn.ModuleList(prior_net)
            posterior_net = nn.ModuleList(posterior_net)
            prior_init_net = nn.Sequential(*prior_init_net)
            posterior_init_net = nn.Sequential(*posterior_init_net)

            # Append to the list of nets
            prior_nets.append(prior_net)
            posterior_nets.append(posterior_net)
            prior_init_nets.append(prior_init_net)
            posterior_init_nets.append(posterior_init_net)

        # Make module list
        self.prior_nets = nn.ModuleList(prior_nets)
        self.posterior_nets = nn.ModuleList(posterior_nets)
        self.prior_init_nets = nn.ModuleList(prior_init_nets)
        self.posterior_init_nets = nn.ModuleList(posterior_init_nets)

        # Init weights of last layers
        for block in chain(self.prior_nets, self.posterior_nets):
            nn.init.constant_(block[-1].model.weight, 0)
            nn.init.normal_(block[-1].model.bias, std=1e-3)