in kbc/optimizers.py [0:0]
def epoch(self, examples: torch.LongTensor):
actual_examples = examples[torch.randperm(examples.shape[0]), :]
loss = nn.CrossEntropyLoss(reduction='mean')
with tqdm.tqdm(total=examples.shape[0], unit='ex', disable=not self.verbose) as bar:
bar.set_description(f'train loss')
b_begin = 0
while b_begin < examples.shape[0]:
input_batch = actual_examples[
b_begin:b_begin + self.batch_size
].cuda()
predictions, factors = self.model.forward(input_batch)
truth = input_batch[:, 2]
l_fit = loss(predictions, truth)
l_reg = self.regularizer.forward(factors)
l = l_fit + l_reg
self.optimizer.zero_grad()
l.backward()
self.optimizer.step()
b_begin += self.batch_size
bar.update(input_batch.shape[0])
bar.set_postfix(loss=f'{l.item():.0f}')