def reset()

in level_replay/envs.py [0:0]


    def reset(self):
        if self.level_sampler:
            seeds = torch.zeros(self.venv.num_envs, dtype=torch.int)
            for e in range(self.venv.num_envs):
                seed = self.level_sampler.sample('sequential')
                seeds[e] = seed
                self.venv.seed(seed,e)

        obs = self.venv.reset()
        if obs.shape[1] != 3:
            obs = obs.transpose(0, 3, 1, 2)
        obs = torch.from_numpy(obs).float().to(self.device)
        # obs = torch.from_numpy(obs).float().to(self.device) / 255.

        if self.level_sampler:
            return obs, seeds
        else:
            return obs